Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2304272120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774096

RESUMO

Addition of particles to a viscoelastic suspension dramatically alters the properties of the mixture, particularly when it is sheared or otherwise processed. Shear-induced stretching of the polymers results in elastic stress that causes a substantial increase in measured viscosity with increasing shear, and an attractive interaction between particles, leading to their chaining. At even higher shear rates, the flow becomes unstable, even in the absence of particles. This instability makes it very difficult to determine the properties of a particle suspension. Here, we use a fully immersed parallel plate geometry to measure the high-shear-rate behavior of a suspension of particles in a viscoelastic fluid. We find an unexpected separation of the particles within the suspension resulting in the formation of a layer of particles in the center of the cell. Remarkably, monodisperse particles form a crystalline layer which dramatically alters the shear instability. By combining measurements of the velocity field and torque fluctuations, we show that this solid layer disrupts the flow instability and introduces a single-frequency component to the torque fluctuations that reflects a dominant velocity pattern in the flow. These results highlight the interplay between particles and a suspending viscoelastic fluid at very high shear rates.

2.
Nano Lett ; 23(11): 4822-4829, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256774

RESUMO

Interfacial polymerization (IP) provides a versatile platform for fabricating defect-free functional nanofilms for various applications, including molecular separation, energy, electronics, and biomedical materials. Unfortunately, coupled with complex natural instability phenomena, the IP mechanism and key parameters underlying the structural evolution of nanofilms, especially in the presence of surfactants as an interface regulator, remain puzzling. Here, we interfacially assembled polymer nanofilm membranes at the free water-oil interface in the presence of differently charged surfactants and comprehensively characterized their structure and properties. Combined with computational simulations, an in situ visualization of interfacial film formation discovered the critical role of Marangoni instability induced by the surfactants via various mechanisms in structurally regulating the nanofilms. Despite their different instability-triggering mechanisms, the delicate control of the surfactants enabled the fabrication of defect-free, ultra-permselective nanofilm membranes. Our study identifies critical IP parameters that allow us to rationally design nanofilms, coatings, and membranes for target applications.

3.
Langmuir ; 38(7): 2185-2191, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35148120

RESUMO

We experimentally and analytically studied vapor-driven solutal Marangoni flow by varying volatile liquid sources on top of the water droplet. We checked and compared the effects of solubility and vapor pressures of volatile liquids on the internal flow pattern using particle image velocimetry (PIV) and the droplet shape using shadowgraphy experiments. To explain the internal flow, we explored the absorption and evaporation mechanism of the vapors and we found that Henry's constant of the volatile liquid is the primary factor. Based on the scaling arguments, we developed theoretical models to explain how much vapor is absorbed into the water droplet, and how the flow pattern occurs and evolves. The scaling models show that there is a good agreement with the experimental results. We believe that understanding this phenomenon is useful for microfluidics applications and fundamental liquid-gas interface problems where vapors can be absorbed into another liquid.

4.
Soft Matter ; 18(21): 4067-4076, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583081

RESUMO

In droplet evaporation, the onset of evaporative crystallization near a contact line is inevitable if there is a coffee-ring effect increasing the local concentration of suspended particles at the edge. In this study, we present a novel idea to control the nucleation location of surfactant crystallization by using the vapor-driven solutal Marangoni effects of a binary mixture drop in a confined chamber. Here, the evaporated volatile vapors near the droplet surface can change the local surface tension and generate a radially inward flow that suppresses the conventional coffee-ring flow (i.e., evaporatively-driven capillary flow). Using this method, we could accumulate suspended particles in the middle of the droplet. In consequence, we succeed in adjusting the nucleation location from the droplet edge to the center provided that a gel-transition process is neglected, where the crystallized material has a relatively long chain length. Here, we tested different hydrocarbon chain lengths of the surfactants (i.e., CTAB > TTAB > DTAB). We expect that the proposed idea can offer great potential for controlling the nucleation in the evaporative crystallization and its final crystalline solid morphology.

5.
Small ; 17(26): e2008097, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081393

RESUMO

Biomacromolecules are likely to undergo self-assembly and show specific collective behavior concentrated in the medium. Although the assembly procedures have been studied for unraveling their mysteries, there are few cases to directly demonstrate the collective behavior and phase transition process in dynamic systems. In the contribution, the drying process of M13 droplet is investigated, and can be successfully simulated by a doctor blade coating method. The morphologies in the deposited film are measured by atomic force microscopy and the liquid crystal phase development is captured in real time using polarized optical microscope. Collective behaviors near the contact line are characterized by the shape of meniscus curve and particle movement velocity. With considering rheological properties and flow, the resultant chiral film is used to align gold nanorods, and this approach can suggest a way to use M13 bacteriophage as a scaffold for the multi-functional chiral structures.


Assuntos
Cristais Líquidos , Nanotubos , Bacteriófago M13 , Ouro , Microscopia de Força Atômica
6.
Soft Matter ; 17(13): 3578-3585, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33320922

RESUMO

Surface-coating technologies are important for a variety of applications, e.g. ink-jet printing, micro-electronic engineering and biological arrays. In this study, we introduce a novel idea to obtain uniform patterns with multi-component solution in a confined geometry. When a droplet of the multi-component liquid evaporates in the confined area, the evaporated vapors are stagnated inside the confined chamber where the evaporated liquid molecule is much heavier than the ambient air. These vapors change internal flow in the droplet by generating Marangoni effects during evaporation, which help to obtain uniform deposition. Finally, we show that a coffee-ring is totally suppressed and a uniformly dried pattern is achieved. For a potential application as display panels, we use quantum dots and create a uniform light-emitting layer.

7.
Soft Matter ; 15(10): 2292-2300, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776042

RESUMO

We investigate the hydrodynamic deformation and breakup of double emulsion droplets under a uniform DC electric field. Based on comprehensive experiments, we observe four different breakup modes for the double emulsion droplet by varying the viscosity of shell liquid, and conductivity, permittivity or volume fraction of the core liquid. The breakup modes are classified as a unidirectional breakup mode, two different bidirectional breakup modes, and a tip-streaming breakup mode. We performed scaling analysis and numerical simulation to explain the experimental observations. We believe that this study could provide insight for the comprehension of double emulsion droplet functionalities in various applications, including drug delivery, materials science, biological and chemical engineering, and lab-on-a-chip applications.

8.
Soft Matter ; 15(11): 2328-2335, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30688346

RESUMO

We study the mechanism of stretching and breaking of a mono-emulsion droplet under a direct current electric field using theoretical and experimental approaches aided by numerical simulation. Axisymmetric straining flow driven by an electric field results in the equilibrium deformation of the droplet along the direction of the electric field if the electric capillary number Cae that is the ratio of electric stresses to capillary stresses, is less than a critical value (Cae)crit. At (Cae)crit, the droplet breaks either before showing the slow deformation stage or rapidly. Furthermore, we developed a theoretical model to understand the mechanism of the transition from equilibrium deformation to non-equilibrium breaking. The Cae that can induce Taylor's deformation D = (α - ß)/(α + ß) ≈ 0.295; where α and ß are the lengths of semi-major and semi-minor axes of the droplet, corresponds to (Cae)crit. At this stage, the maximum flow velocity shifts to the outside of the droplet along the electric field direction and large electric stresses are mainly concentrated at the droplet's side apex causing daughter droplet ejection. Finally, we compare the values of (Cae)crit obtained from the theoretical model ((Cae)crit ≈ 0.25) for which the conductivity ratio (R) between the droplet and ambient liquid i.e., R ∼ O(10) with our experimental results ((Cae)crit ≈ 0.245) and realize that (Cae)crit decreases as R increases. We also observe that even though the viscosity ratio can alter the emulsion breakup modes, it has no effect on (Cae)crit for the onset of breaking.

9.
Phys Rev Lett ; 120(7): 074501, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542955

RESUMO

Understanding jet formation from non-Newtonian fluids is important for improving the quality of various printing and dispensing techniques. Here, we use a laser-based nozzleless method to investigate impulsively formed jets of non-Newtonian fluids. Experiments with a time-resolved imaging setup demonstrate multiple regimes during jet formation that can result in zero, single, or multiple drops per laser pulse. These regimes depend on the ink thickness, ink rheology, and laser energy. For optimized printing, it is desirable to select parameters that result in a single-drop breakup; however, the strain-rate dependent rheology of these inks makes it challenging to determine these conditions a priori. Rather, we present a methodology for characterizing these regimes using dimensionless parameters evaluated from the process parameters and measured ink rheology that are obtained prior to printing and, so, offer a criterion for a single-drop breakup.

10.
Langmuir ; 34(17): 4962-4969, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620373

RESUMO

Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

11.
Phys Rev Lett ; 116(12): 124501, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058080

RESUMO

Surface coatings and patterning technologies are essential for various physicochemical applications. In this Letter, we describe key parameters to achieve uniform particle coatings from binary solutions. First, multiple sequential Marangoni flows, set by solute and surfactant simultaneously, prevent nonuniform particle distributions and continuously mix suspended materials during droplet evaporation. Second, we show the importance of particle-surface interactions that can be established by surface-adsorbed macromolecules. To achieve a uniform deposit in a binary mixture, a small concentration of surfactant and surface-adsorbed polymer (0.05 wt% each) is sufficient, which offers a new physicochemical avenue for control of coatings.

12.
Langmuir ; 32(45): 11899-11906, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27788012

RESUMO

Ellipsoidal particles have previously been shown to suppress the coffee-ring effect in millimeter-sized colloidal droplets. Compared to their spherical counterparts, ellipsoidal particles experience stronger adsorption energy to the drop surface where the anisotropy-induced deformation of the liquid-air interface leads to much greater capillary attractions between particles. Using inkjet-printed colloidal drops of varying drop size, particle concentration, and particle aspect ratio, the present work demonstrates how the suppression of the coffee ring is not only a function of particle anisotropy but rather a competition between the propensity for particles to assemble at the drop surface via capillary interactions and the evaporation-driven particle motion to the contact line. For ellipsoidal particles on the drop surface, the capillary force (Fγ) increases with the particle concentration and aspect ratio, and the hydrodynamic force (Fµ) increases with the particle aspect ratio but decreases with drop size. When Fγ/Fµ > 1, the surface ellipsoids form a coherent network inhibiting their migration to the drop contact line, and the coffee-ring effect is suppressed, whereas when Fγ/Fµ < 1, the ellipsoids move to the contact line, resulting in coffee-ring deposition.

13.
J Korean Med Sci ; 31(1): 9-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26770031

RESUMO

The aim of this study was to estimate internal radiation doses and lifetime cancer risk from food ingestion. Radiation doses from food intake were calculated using the Korea National Health and Nutrition Examination Survey and the measured radioactivity of (134)Cs, (137)Cs, and (131)I from the Ministry of Food and Drug Safety in Korea. Total number of measured data was 8,496 (3,643 for agricultural products, 644 for livestock products, 43 for milk products, 3,193 for marine products, and 973 for processed food). Cancer risk was calculated by multiplying the estimated committed effective dose and the detriment adjusted nominal risk coefficients recommended by the International Commission on Radiation Protection. The lifetime committed effective doses from the daily diet are ranged 2.957-3.710 mSv. Excess lifetime cancer risks are 14.4-18.1, 0.4-0.5, and 1.8-2.3 per 100,000 for all solid cancers combined, thyroid cancer, and leukemia, respectively.


Assuntos
Ingestão de Alimentos , Contaminação Radioativa de Alimentos/análise , Neoplasias Induzidas por Radiação/etiologia , Adolescente , Adulto , Radioisótopos de Césio/química , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Radioisótopos do Iodo/química , Inquéritos Nutricionais , Doses de Radiação , República da Coreia , Adulto Jovem
14.
Phys Rev Lett ; 115(17): 174501, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551117

RESUMO

Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. We report theoretical and experimental results on a time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t)=b(1)t(1/7). Experimental results show good quantitative agreement with the predictions of linear stability analysis. By choosing the value of a single time-independent control parameter, we can either totally suppress the viscous fingering instability or maintain a series of nonsplitting viscous fingers during the fluid displacement process. In addition to the gap thickness of a Hele-Shaw cell, time-dependent control strategies can, in principle, also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tension between the two fluids.

15.
Langmuir ; 31(31): 8726-31, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26185919

RESUMO

We investigate the flow patterns created when a liquid drop contacts a reservoir liquid, which has implications on various physicochemical and biochemical reactions including mixing in microfluidic systems. The localized vortical flow spontaneously triggered by the difference of surface tension between the two liquids is studied, which is thus termed the Marangoni vortex. To quantitatively investigate the strength of vortices, we performed particle image velocimetry (PIV) experiments by varying the surface tension difference, the gap of the flow cell, the density and viscosity of the reservoir liquid, and the size of the drop. A scaling law that balances the interfacial energy of the system with the kinetic energy of the vortical flows allows us to understand the functional dependence of the Marangoni vortex strength on various experimental parameters.

16.
Langmuir ; 31(20): 5684-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25927342

RESUMO

We report noncircular, stable liquid propagation patterns in a displacement process in a confined thin patterned porous layer. For constant fluid injection rates, the average front location of the interface r(t) exhibits a power-law behavior r ∝ t(1/2); however, when surface tension effects become important, the interface displays noncircular shapes, e.g., square, rectangular, or octagonal, and maintains the same shape during most of the injection process. The interface shape is controlled by the value of a dimensionless group representing the strength of surface tension stresses relative to stresses accompanying injection. Furthermore, we show that the propagation patterns of the interface can be controlled by the relative orientation of the different porous layers.


Assuntos
Modelos Químicos , Porosidade , Tensão Superficial
17.
Langmuir ; 31(45): 12560-6, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26496177

RESUMO

The ability to assemble nanomaterials, such as quantum dots, enables the creation of functional devices that present unique optical and electronic properties. For instance, light-emitting diodes with exceptional color purity can be printed via the evaporative-driven assembly of quantum dots. Nevertheless, current studies of the colloidal deposition of quantum dots have been limited to the surfaces of a planar substrate. Here, we investigate the evaporation-driven assembly of quantum dots inside a confined cylindrical geometry. Specifically, we observe distinct deposition patterns, such as banding structures along the length of a capillary tube. Such coating behavior can be influenced by the evaporation speed as well as the concentration of quantum dots. Understanding the factors governing the coating process can provide a means to control the assembly of quantum dots inside a capillary tube, ultimately enabling the creation of novel photonic devices.

18.
Nano Lett ; 14(12): 7017-23, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25360485

RESUMO

Developing the ability to 3D print various classes of materials possessing distinct properties could enable the freeform generation of active electronics in unique functional, interwoven architectures. Achieving seamless integration of diverse materials with 3D printing is a significant challenge that requires overcoming discrepancies in material properties in addition to ensuring that all the materials are compatible with the 3D printing process. To date, 3D printing has been limited to specific plastics, passive conductors, and a few biological materials. Here, we show that diverse classes of materials can be 3D printed and fully integrated into device components with active properties. Specifically, we demonstrate the seamless interweaving of five different materials, including (1) emissive semiconducting inorganic nanoparticles, (2) an elastomeric matrix, (3) organic polymers as charge transport layers, (4) solid and liquid metal leads, and (5) a UV-adhesive transparent substrate layer. As a proof of concept for demonstrating the integrated functionality of these materials, we 3D printed quantum dot-based light-emitting diodes (QD-LEDs) that exhibit pure and tunable color emission properties. By further incorporating the 3D scanning of surface topologies, we demonstrate the ability to conformally print devices onto curvilinear surfaces, such as contact lenses. Finally, we show that novel architectures that are not easily accessed using standard microfabrication techniques can be constructed, by 3D printing a 2 × 2 × 2 cube of encapsulated LEDs, in which every component of the cube and electronics are 3D printed. Overall, these results suggest that 3D printing is more versatile than has been demonstrated to date and is capable of integrating many distinct classes of materials.

20.
Adv Mater ; 36(16): e2310956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38196140

RESUMO

Neuromorphic circuits that can function under extreme deformations are important for various data-driven wearable and robotic applications. Herein, biphasic liquid metal particle (BMP) with unprecedented stretchability and strain-insensitivity (ΔR/R0 = 1.4@ 1200% strain) is developed to realize a stretchable neuromorphic circuit that mimics a spike-based biologic sensory system. The BMP consists of liquid metal particles (LMPs) and rigid liquid metal particles (RLMPs), which are homogeneously mixed via spontaneous solutal-Marangoni mixing flow during coating. This permits facile single step patterning directly on various substrates at room temperature. BMP is highly conductive (2.3 × 106 S/m) without any post activation steps. BMP interconnects are utilized for a sensory system, which is capable of distinguishing variations of biaxial strains with a spiking neural network, thus demonstrating their potential for various sensing and signal processing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA