Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Syst ; 11(5): 536-546.e7, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32910905

RESUMO

Transcriptional profiling of tumors has revealed a stress-like state among the cancer cells with the concerted expression of genes such as fos, jun, and heat-shock proteins, though this has been controversial given possible dissociation-effects associated with single-cell RNA sequencing. Here, we validate the existence of this state using a combination of zebrafish melanoma modeling, spatial transcriptomics, and human samples. We found that the stress-like subpopulation of cancer cells is present from the early stages of tumorigenesis. Comparing with previously reported single-cell RNA sequencing datasets from diverse cancer types, including triple-negative breast cancer, oligodendroglioma, and pancreatic adenocarcinoma, indicated the conservation of this state during tumorigenesis. We also provide evidence that this state has higher tumor-seeding capabilities and that its induction leads to increased growth under both MEK and BRAF inhibitors. Collectively, our study supports the stress-like cells as a cancer cell state expressing a coherent set of genes and exhibiting drug-resistance properties.


Assuntos
Carcinogênese/patologia , Melanoma/genética , Estresse Fisiológico/genética , Adenocarcinoma/genética , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/metabolismo , Melanoma/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Peixe-Zebra
2.
Dis Model Mech ; 11(9)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30061297

RESUMO

Transgenic animals are invaluable for modeling cancer genomics, but often require complex crosses of multiple germline alleles to obtain the desired combinations. Zebrafish models have advantages in that transgenes can be rapidly tested by mosaic expression, but typically lack spatial and temporal control of tumor onset, which limits their utility for the study of tumor progression and metastasis. To overcome these limitations, we have developed a method referred to as Transgene Electroporation in Adult Zebrafish (TEAZ). TEAZ can deliver DNA constructs with promoter elements of interest to drive fluorophores, oncogenes or CRISPR-Cas9-based mutagenic cassettes in specific cell types. Using TEAZ, we created a highly aggressive melanoma model via Cas9-mediated inactivation of Rb1 in the context of BRAFV600E in spatially constrained melanocytes. Unlike prior models that take ∼4 months to develop, we found that TEAZ leads to tumor onset in ∼7 weeks, and these tumors develop in fully immunocompetent animals. As the resulting tumors initiated at highly defined locations, we could track their progression via fluorescence, and documented deep invasion into tissues and metastatic deposits. TEAZ can be deployed to other tissues and cell types, such as the heart, with the use of suitable transgenic promoters. The versatility of TEAZ makes it widely accessible for rapid modeling of somatic gene alterations and cancer progression at a scale not achievable in other in vivo systems.


Assuntos
Envelhecimento/genética , Eletroporação , Transgenes , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Carcinogênese/genética , Carcinogênese/patologia , Modelos Animais de Doenças , Progressão da Doença , Embrião não Mamífero/metabolismo , Técnicas de Transferência de Genes , Melanoma/patologia , Plasmídeos/genética , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia
3.
Cancer Discov ; 8(8): 1006-1025, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29903879

RESUMO

Advanced, metastatic melanomas frequently grow in subcutaneous tissues and portend a poor prognosis. Though subcutaneous tissues are largely composed of adipocytes, the mechanisms by which adipocytes influence melanoma are poorly understood. Using in vitro and in vivo models, we find that adipocytes increase proliferation and invasion of adjacent melanoma cells. Additionally, adipocytes directly transfer lipids to melanoma cells, which alters tumor cell metabolism. Adipocyte-derived lipids are transferred to melanoma cells through the FATP/SLC27A family of lipid transporters expressed on the tumor cell surface. Among the six FATP/SLC27A family members, melanomas significantly overexpress FATP1/SLC27A1. Melanocyte-specific FATP1 expression cooperates with BRAFV600E in transgenic zebrafish to accelerate melanoma development, an effect that is similarly seen in mouse xenograft studies. Pharmacologic blockade of FATPs with the small-molecule inhibitor Lipofermata abrogates lipid transport into melanoma cells and reduces melanoma growth and invasion. These data demonstrate that stromal adipocytes can drive melanoma progression through FATP lipid transporters and represent a new target aimed at interrupting adipocyte-melanoma cross-talk.Significance: We demonstrate that stromal adipocytes are donors of lipids that mediate melanoma progression. Adipocyte-derived lipids are taken up by FATP proteins that are aberrantly expressed in melanoma. Inhibition of FATPs decreases melanoma lipid uptake, invasion, and growth. We provide a mechanism for how stromal adipocytes drive tumor progression and demonstrate a novel microenvironmental therapeutic target. Cancer Discov; 8(8); 1006-25. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 899.


Assuntos
Adipócitos/citologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Mutação , Invasividade Neoplásica , Transplante de Neoplasias , Compostos de Espiro/administração & dosagem , Compostos de Espiro/farmacologia , Tiadiazóis/administração & dosagem , Tiadiazóis/farmacologia , Microambiente Tumoral , Regulação para Cima , Peixe-Zebra
4.
Nat Commun ; 8: 14343, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181494

RESUMO

Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITFHI/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact a gene expression program of melanocyte differentiation. We screened for microenvironmental factors leading to phenotype switching, and find that EDN3 induces a state that is both proliferative and differentiated. CRISPR-mediated inactivation of EDN3, or its synthetic enzyme ECE2, from the microenvironment abrogates phenotype switching and increases animal survival. These results demonstrate that after metastatic dissemination, the microenvironment provides signals to promote phenotype switching and provide proof that targeting tumour cell plasticity is a viable therapeutic opportunity.


Assuntos
Plasticidade Celular , Melanoma/patologia , Microambiente Tumoral , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Modelos Biológicos , Metástase Neoplásica , Fenótipo , Microambiente Tumoral/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA