Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(6): 971-973, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769467

RESUMO

Metagenomic taxonomic classifiers analyze either DNA or amino acid (AA) sequences. Metabuli ( https://metabuli.steineggerlab.com ), however, jointly analyzes both DNA and AA to leverage AA conservation for sensitive homology detection and DNA mutations for specific differentiation of closely related taxa. In the Critical Assessment of Metagenome Interpretation 2 plant-associated dataset, Metabuli covered 99% and 98% of classifications of state-of-the-art DNA- and AA-based classifiers, respectively.


Assuntos
Aminoácidos , Metagenoma , Metagenômica , Metagenômica/métodos , Aminoácidos/genética , DNA/genética , Software , Plantas/classificação , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos
2.
Nucleic Acids Res ; 48(16): 9037-9052, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32735658

RESUMO

Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.


Assuntos
Cromatina/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Acetilação , Animais , Reprogramação Celular/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinação/genética
3.
Biochem Biophys Res Commun ; 526(1): 176-183, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32201075

RESUMO

Autophagy is an essential process to maintain cell survival and homeostasis under various stress conditions. Here, we report that lysine-specific demethylase 3A (KDM3A) plays an important role in starvation-induced autophagy. Using Kdm3a knockout mice, we demonstrate that KDM3A is crucial for proper hepatic autophagy in vivo. Hepatic mRNA expression analysis and ChIP assay in WT and Kdm3a knockout mouse livers reveal that KDM3A activates autophagy genes by reducing histone H3K9me2 levels upon fasting. Together, our finding represents previously unidentified function of KDM3A as a key regulator of autophagy, implicating potential therapeutic approaches for autophagy-related diseases.


Assuntos
Autofagia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Autofagossomos/metabolismo , Jejum , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Fígado/citologia , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Opt Express ; 25(14): 16854-16859, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789184

RESUMO

We report a facile and direct fabrication method for integrating functional optical microstructures on the top surface of an optical fiber. A programmable maskless fabrication system was developed by using digital micromirror device (DMD), which allows rapid prototyping and low-cost fabrication without physical photomask. This maskless UV exposure system has the spatial resolution of 2.2 µm for an exposed area of 245 µm x 185 µm. Diverse optical microstructures were photolithographically defined on multimode fibers and a single mode optical fiber serially spliced with a coreless silica fiber segment. This method provides a new route for developing compact functional fiber-optic applications such as laser scanning, biosensing, or laser endomicroscopy.

5.
Proc Natl Acad Sci U S A ; 110(31): 12643-8, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858471

RESUMO

Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Osso e Ossos/citologia , Cartilagem/citologia , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Transgênicos , Células Estromais/citologia , Células Estromais/metabolismo
6.
Nature ; 457(7228): 490-4, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19078959

RESUMO

Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.


Assuntos
Cartilagem/citologia , Células-Tronco Hematopoéticas/citologia , Osteogênese/fisiologia , Nicho de Células-Tronco/citologia , Nicho de Células-Tronco/fisiologia , Animais , Antígenos CD/metabolismo , Cartilagem/embriologia , Coristoma , Feto/citologia , Células-Tronco Hematopoéticas/metabolismo , Mandíbula/citologia , Mandíbula/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Crânio/citologia , Crânio/embriologia , Fator de Transcrição Sp7 , Antígenos Thy-1/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Calcif Tissue Int ; 86(4): 325-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20213106

RESUMO

Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the beta(1) integrin subunit (beta(1)DN) containing the transmembrane domain and cytoplasmic tail of beta(1) integrin. Cells expressing beta(1)DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, beta(1)DN cells exhibited a significant reduction in the upregulation of cyclooxygenase-2 gene expression and prostaglandin E(2) release. Similarly, the ratio of receptor activator of NF-kappaB ligand mRNA to osteoprotegerin mRNA decreased significantly after exposure to fluid flow in control cells but not in beta(1)DN cells. Interfering with integrin signaling did not affect mechanically induced intracellular calcium mobilization. These data suggest that integrins may initiate the cellular response of osteocytes to dynamic fluid flow and may serve as mechanosensitive molecules in bone.


Assuntos
Integrina beta1/fisiologia , Mecanotransdução Celular/genética , Osteócitos/metabolismo , Fenômenos Biomecânicos , Cálcio/metabolismo , Adesão Celular/genética , Células Cultivadas , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Modelos Biológicos , Osteócitos/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estimulação Física , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fluxo Pulsátil/fisiologia , Transdução de Sinais/genética , Transfecção
8.
J Biomed Opt ; 24(3): 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30873763

RESUMO

We report a fiber-optic plasmonic probe with nanogap-rich gold nanoislands for on-site surface-enhanced Raman spectroscopy (SERS). The plasmonic probe features nanogap-rich Au nanoislands on the top surface of a single multimode fiber. Au nanoislands were monolithically fabricated using repeated solid-state dewetting of thermally evaporated Au thin film. The plasmonic probe shows 7.8 × 106 in SERS enhancement factor and 100 nM in limit-of-detection for crystal violet under both the excitation of laser light and the collection of SERS signals through the optical fiber. The fiber-through measurement also demonstrates the label-free SERS detection of folic acid at micromolar level. The plasmonic probe can provide a tool for on-site and in vivo SERS applications.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Ácido Fólico/análise , Limite de Detecção , Nanotecnologia/instrumentação , Processamento de Sinais Assistido por Computador , Análise Espectral Raman/métodos
9.
Sci Rep ; 9(1): 3560, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837501

RESUMO

An endomicroscope opens new frontiers of non-invasive biopsy for in vivo imaging applications. Here we report two-photon laser scanning endomicroscope for in vivo cellular and tissue imaging using a Lissajous fiber scanner. The fiber scanner consists of a piezoelectric (PZT) tube, a single double-clad fiber (DCF) with high fluorescence collection, and a micro-tethered-silicon-oscillator (MTSO) for the separation of biaxial resonant scanning frequencies. The endomicroscopic imaging exhibits 5 frames/s with 99% in scanning density by using the selection rule of scanning frequencies. The endomicroscopic scanner was compactly packaged within a stainless tube of 2.6 mm in diameter with a high NA gradient-index (GRIN) lens, which can be easily inserted into the working channel of a conventional laparoscope. The lateral and axial resolutions of the endomicroscope are 0.70 µm and 7.6 µm, respectively. Two-photon fluorescence images of a stained kidney section and miscellaneous ex vivo and in vivo organs from wild type and green fluorescent protein transgenic (GFP-TG) mice were successfully obtained by using the endomicroscope. The endomicroscope also obtained label free images including autofluorescence and second-harmonic generation of an ear tissue of Thy1-GCaMP6 (GP5.17) mouse. The Lissajous scanning two-photon endomicroscope can provide a compact handheld platform for in vivo tissue imaging or optical biopsy applications.


Assuntos
Endoscopia/instrumentação , Microscopia/instrumentação , Fótons , Animais , Rim/diagnóstico por imagem , Fenômenos Mecânicos , Camundongos , Fenômenos Ópticos
10.
Brain Res ; 1208: 170-80, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18395703

RESUMO

The cerebellum is involved in complex physiological functions including motor control, sensory perception, cognition, language, and emotion. Humans and animals with prion diseases are characterized clinically by ataxia, postural abnormalities and cognitive decline. Pathology in the cerebellum affected by prions includes spongiform degeneration, neuronal loss, and gliosis. To develop an in vitro model system for studying prion biology in cerebellar cells, we established and characterized an immortal cell line (CRBL) isolated from the cerebellum of mice lacking expression of a protein involved in cell cycle arrest. The characteristics of the cells include morphological heterogeneity, rapid proliferation, serum responsiveness during growth, and a change in the number of chromosomes. CRBL cells expressed both neuronal and glial cell markers as well as a considerable level of cellular prion protein, PrP(C). Upon in vitro infection, CRBL cells exhibited selective susceptibility to prions isolated from different sources. These cells chronically propagated prions from SMB cells. Strain-specific prion infection in CRBL cells was not due to instability of the cell line, allelic variance, or mutations in the PrP gene. Molecular properties of prions derived from SMB cells were maintained in the infected CRBL cells. Our results suggest that the specific interaction between a prion strain and hosts determined the selective susceptibility of CRBL cells, which reflects the conditions in vivo. In addition to the future studies revealing cellular and molecular mechanism involved in prion pathogenesis, CRBL cells will contribute to the studies dealing with prion strain properties and host susceptibilities.


Assuntos
Linhagem Celular Transformada/fisiologia , Suscetibilidade a Doenças , Neurônios/fisiologia , Príons/metabolismo , Animais , Contagem de Células , Células Cultivadas , Cerebelo/citologia , Citogenética/métodos , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Glicosilação , Camundongos , Camundongos Knockout , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Proteína Supressora de Tumor p53/deficiência
11.
J Bone Miner Res ; 22(12): 1913-23, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17696762

RESUMO

UNLABELLED: Tissue regeneration is increasingly viewed as reactivation of a developmental process that, when misappropriated, can lead to malignant growth. Therefore, understanding the molecular and cellular pathways that govern tissue regeneration provides a glimpse into normal development as well as insights into pathological conditions such as cancer. Herein, we studied the role of Wnt signaling in skeletal tissue regeneration. INTRODUCTION: Some adult tissues have the ability to regenerate, and among these, bone is one of the most remarkable. Bone exhibits a persistent, lifelong capacity to reform after injury, and continual bone regeneration is a prerequisite to maintaining bone mass and density. Even slight perturbations in bone regeneration can have profound consequences, as exemplified by conditions such as osteoporosis and delayed skeletal repair. Here, our goal was to determine the role of Wnts in adult bone regeneration. MATERIALS AND METHODS: Using TOPgal reporter mice, we found that damage to the skeleton instigated Wnt reporter activity, specifically at the site of injury. We used a skeletal injury model to show that Wnt inhibition, achieved through adenoviral expression of Dkk1 in the adult skeleton, prevented the differentiation of osteoprogenitor cells. RESULTS: As a result, injury-induced bone regeneration was reduced by 84% compared with controls. Constitutive activation of the Wnt pathway resulting from a mutation in the Lrp5 Wnt co-receptor results in high bone mass, but our experiments showed that this same point mutation caused a delay in bone regeneration. In these transgenic mice, osteoprogenitor cells in the injury site were maintained in a proliferative state and differentiation into osteoblasts was delayed. CONCLUSIONS: When considered together, these data provide a framework for understanding the roles of Wnt signaling in adult bone regeneration and suggest a feasible approach to treating clinical conditions where enhanced bone formation is desired.


Assuntos
Regeneração Óssea , Transdução de Sinais , Células-Tronco/metabolismo , Tíbia/metabolismo , Proteínas Wnt/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Regeneração Óssea/genética , Diferenciação Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Transgênicos , Mutação , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Transdução de Sinais/genética , Células-Tronco/patologia , Tíbia/patologia , Proteínas Wnt/genética
12.
Bone ; 40(4): 919-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17175211

RESUMO

Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate.


Assuntos
Regeneração Óssea/fisiologia , Osseointegração/fisiologia , Próteses e Implantes , Células-Tronco Adultas/citologia , Animais , Fenômenos Biomecânicos , Medula Óssea/fisiologia , Consolidação da Fratura/fisiologia , Humanos , Masculino , Camundongos , Modelos Animais , Osteoblastos/citologia , Osteogênese/fisiologia , Estresse Mecânico , Tíbia/anatomia & histologia , Tíbia/fisiologia , Tíbia/cirurgia
13.
Bone ; 41(1): 39-51, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17459803

RESUMO

Integrins link the inside of a cell with its outside environment and in doing so regulate a wide variety of cell behaviors. Integrins are well known for their roles in angiogenesis and cell migration but their functions in bone formation are less clear. The majority of integrin signaling proceeds through focal adhesion kinase (FAK), an essential component of the focal adhesion complex. We generated transgenic mice in which FAK was deleted in osteoblasts and uncovered a previously unknown role in osteoblast differentiation associated with bone healing. FAK mutant cells migrated to the site of skeletal injury and angiogenesis was unaffected yet the transgenic mice still exhibited numerous defects in reparative bone formation. Osteoblast differentiation itself was unperturbed by the loss of FAK, whereas the attachment of osteoclasts to the bone matrix was disrupted in vivo. We postulate that defective bi-directional integrin signaling affects the organization of the collagen matrix. Finally, we present a compensatory candidate molecule, Pyk2, which localized to the focal adhesions in osteoblasts that were lacking FAK.


Assuntos
Regeneração Óssea/fisiologia , Remodelação Óssea/fisiologia , Quinase 1 de Adesão Focal/fisiologia , Osteoblastos/citologia , Animais , Sequência de Bases , Matriz Óssea/citologia , Regeneração Óssea/genética , Remodelação Óssea/genética , Adesão Celular , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Primers do DNA/genética , Feminino , Desenvolvimento Fetal , Quinase 1 de Adesão Focal/deficiência , Quinase 1 de Adesão Focal/genética , Quinase 2 de Adesão Focal/fisiologia , Heterozigoto , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoclastos/citologia , Gravidez , Transdução de Sinais
14.
J Drug Target ; 15(9): 632-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17968717

RESUMO

Liposomes have tremendous potential for efficient small molecule delivery. Previous studies, however, have been hampered by an inability to monitor their distribution and release of contents. Here, the authors demonstrate the real time monitoring of small molecule delivery using luciferin as a model. To monitor the release of luciferin in vivo, luciferin was packaged in thermosensitive liposomes and delivered into transgenic mice that constitutively express luciferase. Their experiments show the thermally induced release of the liposomal content in real time. In addition, the model provides evidence that the thermosensitive liposomes are stable over a long period of time ( approximately 3 weeks), and still release their content upon heating. These data present a strategy to monitor liposomal drug delivery in vivo with luciferin.


Assuntos
Portadores de Fármacos , Lipossomos , Animais , Fluoresceínas , Camundongos , Camundongos Transgênicos
15.
J Cardiovasc Ultrasound ; 22(4): 220-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25580198

RESUMO

A 22-year-old male presented with recurrent stroke, central cyanosis, and dyspnea. Transesophageal echocardiography and cardiac catheterization revealed bidirectional shunt flow through atrial septal defect (ASD) without pulmonary arterial hypertension. The orifice of inferior vena cava facing towards ASD opening led partially right to left shunt resulting in cyanosis with normal pulmonary arterial pressure.

16.
PLoS One ; 7(9): e43291, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028449

RESUMO

A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK-/- clonal lines and conditional FAK knockout mice, respectively. FAK-/- osteoblasts showed an ablated prostaglandin E(2) (PGE(2)) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Mecanotransdução Celular , Osteoblastos/metabolismo , Osteogênese , Adaptação Biológica/genética , Animais , Peso Corporal/genética , Osso e Ossos/metabolismo , Linhagem Celular , Dinoprostona/metabolismo , Feminino , Quinase 2 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Adesões Focais/genética , Deleção de Genes , Expressão Gênica , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Knockout , Osteogênese/genética , Fosforilação , Transporte Proteico , Ulna/anatomia & histologia , Ulna/metabolismo
17.
PLoS One ; 7(1): e30940, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22295120

RESUMO

The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (µCT) for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v.) administered to mice bearing subcutaneous (s.c) FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and µCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT) was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.


Assuntos
Bactérias/genética , Glioblastoma/microbiologia , Medições Luminescentes/métodos , Neoplasias Pulmonares/microbiologia , Imagem Molecular/métodos , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Genes Reporter/genética , Engenharia Genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Microtomografia por Raio-X
18.
PLoS One ; 6(9): e25093, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966423

RESUMO

NF-κB activation is a critical signaling event in the inflammatory response and has been implicated in a number of pathological lung diseases. To enable the assessment of NF-κB activity in the lungs, we transfected a luciferase based NF-κB reporter into the lungs of mice or into Raw264.7 cells in culture. The transfected mice showed specific luciferase expression in the pulmonary tissues. Using these mouse models, we studied the kinetics of NF-κB activation following exposure to lipopolysaccharide (LPS). The Raw264.7 cells expressed a dose-dependent increase in luciferase following exposure to LPS and the NF-κB reporter mice expressed luciferase in the lungs following LPS challenge, establishing that bioluminescence imaging provides adequate sensitivity for tracking the NF-κB activation pathway. Interventions affecting the NF-κB pathway are promising clinical therapeutics, thus we further examined the effect of IKK-2 inhibition by MLN120B and glycogen synthase kinase 3 beta inhibition by TDZD-8 on NF-κB activation. Pre-treatment with either MLN120B or TDZD-8 attenuated NF-κB activation in the pulmonary tissues, which was accompanied with suppression of pro-inflammatory chemokine MIP-1ß and induction of anti-inflammatory cytokine IL-10. In summary, we have established an imaging based approach for non-invasive and longitudinal assessment of NF-κB activation and regulation during acute lung injury. This approach will potentiate further studies on NF-κB regulation under various inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Pulmão/metabolismo , NF-kappa B/metabolismo , Tiadiazóis/farmacologia , Animais , Linhagem Celular , Quimiocina CCL4/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Quinase I-kappa B/antagonistas & inibidores , Interleucina-10/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos
19.
PLoS One ; 5(2): e9364, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20186331

RESUMO

Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.


Assuntos
Diagnóstico por Imagem/métodos , Luciferases/metabolismo , Medições Luminescentes/métodos , Neoplasias Mamárias Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Vetores Genéticos/genética , Lentivirus/genética , Luciferases/genética , Medições Luminescentes/instrumentação , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Sensibilidade e Especificidade , Fatores de Tempo , Transfecção , Carga Tumoral
20.
J Vis Exp ; (26)2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19404236

RESUMO

4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.


Assuntos
Medições Luminescentes/métodos , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Feminino , Luciferases/biossíntese , Luciferases/genética , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA