Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 292(47): 19226-19237, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972189

RESUMO

Lipopolysaccharide, the outer cell-wall component of Gram-negative bacteria, has been shown to be important for symbiotic associations. We recently reported that the lipopolysaccharide O-antigen of Burkholderia enhances the initial colonization of the midgut of the bean bug, Riptortus pedestris However, the midgut-colonizing Burkholderia symbionts lack the O-antigen but display the core oligosaccharide on the cell surface. In this study, we investigated the role of the core oligosaccharide, which directly interacts with the host midgut, in the Riptortus-Burkholderia symbiosis. To this end, we generated the core oligosaccharide mutant strains, ΔwabS, ΔwabO, ΔwaaF, and ΔwaaC, and determined the chemical structures of their oligosaccharides, which exhibited different compositions. The symbiotic properties of these mutant strains were compared with those of the wild-type and O-antigen-deficient ΔwbiG strains. Upon introduction into Riptortus via the oral route, the core oligosaccharide mutant strains exhibited different rates of colonization of the insect midgut. The symbiont titers in fifth-instar insects revealed significantly reduced population sizes of the inner core oligosaccharide mutant strains ΔwaaF and ΔwaaC These two strains also negatively affected host growth rate and fitness. Furthermore, R. pedestris individuals colonized with the ΔwaaF and ΔwaaC strains were vulnerable to septic bacterial challenge, similar to insects without a Burkholderia symbiont. Taken together, these results suggest that the core oligosaccharide from Burkholderia symbionts plays a critical role in maintaining a proper symbiont population and in supporting the beneficial effects of the symbiont on its host in the Riptortus-Burkholderia symbiosis.


Assuntos
Burkholderia/fisiologia , Trato Gastrointestinal/crescimento & desenvolvimento , Heterópteros/crescimento & desenvolvimento , Oligossacarídeos/metabolismo , Simbiose/fisiologia , Animais , Burkholderia/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Heterópteros/genética , Heterópteros/microbiologia , Mutação , Antígenos O/metabolismo
2.
J Biol Chem ; 290(34): 21042-21053, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26116716

RESUMO

The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.


Assuntos
Burkholderia/química , Parede Celular/química , Heterópteros/microbiologia , Antígenos O/química , Simbiose , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Burkholderia/efeitos dos fármacos , Burkholderia/metabolismo , Burkholderia/fisiologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Heterópteros/imunologia , Heterópteros/metabolismo , Antígenos O/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(26): E2381-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23757494

RESUMO

Many bacteria accumulate granules of polyhydroxyalkanoate (PHA) within their cells, which confer resistance to nutritional depletion and other environmental stresses. Here, we report an unexpected involvement of the bacterial endocellular storage polymer, PHA, in an insect-bacterium symbiotic association. The bean bug Riptortus pedestris harbors a beneficial and specific gut symbiont of the ß-proteobacterial genus Burkholderia, which is orally acquired by host nymphs from the environment every generation and easily cultivable and genetically manipulatable. Biochemical and cytological comparisons between symbiotic and cultured Burkholderia detected more PHA granules consisting of poly-3-hydroxybutyrate and associated phasin (PhaP) protein in the symbiotic Burkholderia. Among major PHA synthesis genes, phaB and phaC were disrupted by homologous recombination together with the phaP gene, whereby ΔphaB, ΔphaC, and ΔphaP mutants were generated. Both in culture and in symbiosis, accumulation of PHA granules was strongly suppressed in ΔphaB and ΔphaC, but only moderately in ΔphaP. In symbiosis, the host insects infected with ΔphaB and ΔphaC exhibited significantly lower symbiont densities and smaller body sizes. These deficient phenotypes associated with ΔphaB and ΔphaC were restored by complementation of the mutants with plasmids encoding a functional phaB/phaC gene. Retention analysis of the plasmids revealed positive selection acting on the functional phaB/phaC in symbiosis. These results indicate that the PHA synthesis genes of the Burkholderia symbiont are required for normal symbiotic association with the Riptortus host. In vitro culturing analyses confirmed vulnerability of the PHA gene mutants to environmental stresses, suggesting that PHA may play a role in resisting stress under symbiotic conditions.


Assuntos
Burkholderia/genética , Burkholderia/metabolismo , Genes Bacterianos , Heterópteros/microbiologia , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Simbiose/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sistema Digestório/microbiologia , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Fenótipo , Estresse Fisiológico/genética
4.
Arch Insect Biochem Physiol ; 88(1): 4-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25521625

RESUMO

Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Simbiose/fisiologia , Animais , Burkholderia/genética , Trato Gastrointestinal/microbiologia , Heterópteros/fisiologia , Larva/microbiologia
5.
Appl Environ Microbiol ; 80(14): 4374-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814787

RESUMO

The Riptortus-Burkholderia symbiotic system is an experimental model system for studying the molecular mechanisms of an insect-microbe gut symbiosis. When the symbiotic midgut of Riptortus pedestris was investigated by light and transmission electron microscopy, the lumens of the midgut crypts that harbor colonizing Burkholderia symbionts were occupied by an extracellular matrix consisting of polysaccharides. This observation prompted us to search for symbiont genes involved in the induction of biofilm formation and to examine whether the biofilms are necessary for the symbiont to establish a successful symbiotic association with the host. To answer these questions, we focused on purN and purT, which independently catalyze the same step of bacterial purine biosynthesis. When we disrupted purN and purT in the Burkholderia symbiont, the ΔpurN and ΔpurT mutants grew normally, and only the ΔpurT mutant failed to form biofilms. Notably, the ΔpurT mutant exhibited a significantly lower level of cyclic-di-GMP (c-di-GMP) than the wild type and the ΔpurN mutant, suggesting involvement of the secondary messenger c-di-GMP in the defect of biofilm formation in the ΔpurT mutant, which might operate via impaired purine biosynthesis. The host insects infected with the ΔpurT mutant exhibited a lower infection density, slower growth, and lighter body weight than the host insects infected with the wild type and the ΔpurN mutant. These results show that the function of purT of the gut symbiont is important for the persistence of the insect gut symbiont, suggesting the intricate biological relevance of purine biosynthesis, biofilm formation, and symbiosis.


Assuntos
Biofilmes , Trato Gastrointestinal/microbiologia , Heterópteros/microbiologia , Purinas/biossíntese , Simbiose , Animais , Burkholderia/genética , Burkholderia/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Microscopia Eletrônica de Transmissão , Mutação , Polissacarídeos/metabolismo
6.
Appl Environ Microbiol ; 79(16): 4879-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23747704

RESUMO

To establish a host-bacterium symbiotic association, a number of factors involved in symbiosis must operate in a coordinated manner. In insects, bacterial factors for symbiosis have been poorly characterized at the molecular and biochemical levels, since many symbionts have not yet been cultured or are as yet genetically intractable. Recently, the symbiotic association between a stinkbug, Riptortus pedestris, and its beneficial gut bacterium, Burkholderia sp., has emerged as a promising experimental model system, providing opportunities to study insect symbiosis using genetically manipulated symbiotic bacteria. Here, in search of bacterial symbiotic factors, we targeted cell wall components of the Burkholderia symbiont by disruption of uppP gene, which encodes undecaprenyl pyrophosphate phosphatase involved in biosynthesis of various bacterial cell wall components. Under culture conditions, the ΔuppP mutant showed higher susceptibility to lysozyme than the wild-type strain, indicating impaired integrity of peptidoglycan of the mutant. When administered to the host insect, the ΔuppP mutant failed to establish normal symbiotic association: the bacterial cells reached to the symbiotic midgut but neither proliferated nor persisted there. Transformation of the ΔuppP mutant with uppP-encoding plasmid complemented these phenotypic defects: lysozyme susceptibility in vitro was restored, and normal infection and proliferation in the midgut symbiotic organ were observed in vivo. The ΔuppP mutant also exhibited susceptibility to hypotonic, hypertonic, and centrifugal stresses. These results suggest that peptidoglycan cell wall integrity is a stress resistance factor relevant to the successful colonization of the stinkbug midgut by Burkholderia symbiont.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/fisiologia , Parede Celular/metabolismo , Heterópteros/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Burkholderia/citologia , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Simbiose
7.
Appl Environ Microbiol ; 79(23): 7229-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038695

RESUMO

Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host's control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.


Assuntos
Burkholderia/fisiologia , Insetos/microbiologia , Simbiose , Animais , Burkholderia/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Viabilidade Microbiana
8.
Front Microbiol ; 14: 1278917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029092

RESUMO

The reason why the potent entomopathogen Serratia marcescens fails to kill insects through oral infection is unknown. To compare effects of septic injection and oral administration of S. marcescens, we used a model bean bug, Riptortus pedestris. Most R. pedestris insects survived oral infections, but not septic infections. Although the number of S. marcescens cells in hemolymph after oral infection, which were originated from gut-colonizing S. marcescens, was higher than the fatal number of cells used in septic injection, they did not kill host insects, suggesting a loss of virulence in gut-colonizing S. marcescens cells. When gut-colonizing S. marcescens cells were septically injected into insects, they failed to kill R. pedestris and survive in hemolymph. To understand the avirulence mechanisms in gut-colonizing bacteria, lipopolysaccharides of S. marcescens were analyzed and revealed that the O antigen was lost during gut colonization. Gut-colonizing S. marcescens cells were resistant to humoral immune responses but susceptible to cellular immune responses, easily succumbing to phagocytosis of hemocytes. When cellular immunity was suppressed, the gut-colonizing S. marcescens cells recovered their virulence and killed insects through septic injection. These results suggest that a key mechanism of avirulence in orally infected S. marcescens is the loss of the O antigen, resulting in susceptibility to host's cellular immune responses.

9.
Microbiol Spectr ; 11(1): e0433022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511662

RESUMO

Symbiosis requires the adaptation of symbiotic bacteria to the host environment. Symbiotic factors for bacterial adaptation have been studied in various experimental models, including the Burkholderia-bean bug symbiosis model. Previously identified symbiotic factors of Burkholderia symbionts of bean bugs provided insight into the host environment being stressful to the symbionts. Because DegP, which functions as both a protease and a chaperone, supports bacterial growth under various stressful conditions, we hypothesized that DegP might be a novel symbiotic factor of Burkholderia symbionts in the symbiotic association with bean bugs. The expression level of degP was highly elevated in symbiotic Burkholderia cells in comparison with cultured cells. When the degP-deficient strain competed for symbiotic association against the wild-type strain, the ΔdegP strain showed no symbiotic competitiveness. In vivo monoinfection with the ΔdegP strain revealed a lower symbiont titer in the symbiotic organ than that of the wild-type strain, indicating that the ΔdegP strain failed to persist in the host. In in vitro assays, the ΔdegP strain showed susceptibility to heat and high-salt stressors and a decreased level of biofilm formation. To further determine the role of the proteolytic activity of DegP in symbiosis, we generated missense mutant DegPS248A exhibiting a defect in protease activity only. The ΔdegP strain complemented with degPS248A showed in vitro characteristics similar to those of the ΔdegP strain and failed to persist in the symbiotic organ. Together, the results of our study demonstrated that the proteolytic activity of DegP, which is involved in the stress resistance and biofilm formation of the Burkholderia symbiont, plays an essential role in symbiotic persistence in the host bean bug. IMPORTANCE Bacterial DegP has dual functions as a protease and a chaperone and supports bacterial growth under stressful conditions. In symbioses involving bacteria, bacterial symbionts encounter various stressors and may need functional DegP for symbiotic association with the host. Using the Burkholderia-bean bug symbiosis model, which is a useful model for identifying bacterial symbiotic factors, we demonstrated that DegP is indeed a symbiotic factor of Burkholderia persistence in its host bean bug. In vitro experiments to understand the symbiotic mechanisms of degP revealed that degP confers resistance to heat and high-salt stresses. In addition, degP supports biofilm formation, which is a previously identified persistence factor of the Burkholderia symbiont. Furthermore, using a missense mutation in a protease catalytic site of degP, we specifically elucidated that the proteolytic activity of degP plays essential roles in stress resistance, biofilm formation, and, thus, symbiotic persistence in the host bean bug.


Assuntos
Burkholderia , Fabaceae , Heterópteros , Animais , Heterópteros/metabolismo , Heterópteros/microbiologia , Proteólise , Simbiose , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
10.
Microbiol Spectr ; : e0351022, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976011

RESUMO

Trehalose, a nonreducing disaccharide, functions as a stress protectant in many organisms, including bacteria. In symbioses involving bacteria, the bacteria have to overcome various stressors to associate with their hosts; thus, trehalose biosynthesis may be important for symbiotic bacteria. Here, we investigated the role of trehalose biosynthesis in the Burkholderia-bean bug symbiosis. Expression levels of two trehalose biosynthesis genes, otsA and treS, were elevated in symbiotic Burkholderia insecticola cells, and hence mutant ΔotsA and ΔtreS strains were generated to examine the functions of these genes in symbiosis. An in vivo competition assay with the wild-type strain revealed that fewer ΔotsA cells, but not ΔtreS cells, colonized the host symbiotic organ, the M4 midgut, than wild-type cells. The ΔotsA strain was susceptible to osmotic pressure generated by high salt or high sucrose concentrations, suggesting that the reduced symbiotic competitiveness of the ΔotsA strain was due to the loss of stress resistance. We further demonstrated that fewer ΔotsA cells infected the M4 midgut initially but that fifth-instar nymphs exhibited similar symbiont population size as the wild-type strain. Together, these results demonstrated that the stress resistance role of otsA is important for B. insecticola to overcome the stresses it encounters during passage through the midgut regions to M4 in the initial infection stage but plays no role in resistance to stresses inside the M4 midgut in the persistent stage. IMPORTANCE Symbiotic bacteria have to overcome stressful conditions present in association with the host. In the Burkholderia-bean bug symbiosis, we speculated that a stress-resistant function of Burkholderia is important and that trehalose, known as a stress protectant, plays a role in the symbiotic association. Using otsA, the trehalose biosynthesis gene, and a mutant strain, we demonstrated that otsA confers Burkholderia with competitiveness when establishing a symbiotic association with bean bugs, especially playing a role in initial infection stage. In vitro assays revealed that otsA provides the resistance against osmotic stresses. Hemipteran insects, including bean bugs, feed on plant phloem sap, which may lead to high osmotic pressures in the midguts of hemipterans. Our results indicated that the stress-resistant role of otsA is important for Burkholderia to overcome the osmotic stresses present during the passage through midgut regions to reach the symbiotic organ.

11.
Front Med (Lausanne) ; 8: 670199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988087

RESUMO

Purpose: To establish in vitro and in vivo ocular co-culture models of Staphylococcus epidermidis and Enterococcus faecalis and to study how various concentrations of moxifloxacin affect the survival of these two endophthalmitis-causing bacteria. Methods: Standard strains of S. epidermidis and E. faecalis were used. Color detection agar plates were employed to distinguish their colonies. To establish the in vitro and in vivo co-culture models, S. epidermidis and E. faecalis were co-cultivated at different ratios for various periods. For the in vivo model, various volumes and concentrations of either a mono-culture or co-culture were inoculated into the lower conjunctival sac of rabbits. Finally, the newly developed in vitro and in vivo co-culture models were subjected to the moxifloxacin treatment to access its effect on S. epidermidis and E. faecalis. Results: When S. epidermidis and E. faecalis were cultured separately in tryptic soy broth, their growth peaked and plateaued at approximately 16 and 6 h, respectively. When they were co-cultured, the growth peak of S. epidermidis got delayed, whereas the growth peak of E. faecalis did not change. The number of E. faecalis was significantly higher in the co-culture than that in the mono-culture. Treatment with moxifloxacin in the in vitro co-culture model rapidly decreased the number of S. epidermidis cells at doses ≥ 0.125 µg/ml. In contrast, the number of E. faecalis did not change significantly up to 16 µg/ml moxifloxacin. In in vivo co-culture (at 1:1), the S. epidermidis count decreased in a pattern similar to that seen in in vivo mono-culture and was barely detectable at 24 h after inoculation. In contrast, the of E. faecalis count increased up to 16 h and then decreased. When moxifloxacin was applied (zero, one, or two times) to this model, the S. epidermidis count decreased in proportion to the number of treatments. In contrast, the E. faecalis count increased with moxifloxacin treatment. Conclusions: The in vitro and in vivo co-culture models of S. epidermidis and E. faecalis were established to determine the influence of moxifloxacin eye drops on these bacteria. The results clearly show that the moxifloxacin eye drops can make E. faecalis dominant on the ocular surface.

12.
Dev Comp Immunol ; 104: 103570, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31836412

RESUMO

It is questionable that how gut symbiont can be proliferated in the host symbiotic organs, such as host midgut region, which are known to be highly stressful and nutritional depleted conditions. Since Riptortus-Burkholderia symbiosis system is a good model to study this question, we hypothesized that Burkholderia symbiont will use host-derived bacterial growth factor(s) to colonize persistently in the host midgut 4 (M4) region, which is known as symbiotic organ. In this study, we observed that although gut-colonized symbiotic Burkholderia cells did not grow in the nutrient-limited media conditions, these symbionts were able to grow dose-dependent manner by addition of host naïve M4 lysate, supporting that host-derived growth factor molecule(s) may exist in the host M4 lysate. By further experiments, a host-derived growth factor(s) did not lose its biological activity in the conditions of high temperature, treatment of phenol-chloroform or ethyl alcohol precipitation, indicating that a growth factor molecule(s) is neither a protein nor a DNA. Also, based on the biochemical analyses data, molecular weight of the host-derived bacterial growth factor(s) was turned out to be less than 3 kDa molecular mass and to give the positive chemical response to the ninhydrin reagent on thin layer chromatography. Finally, we found that one specific peak showing ninhydrin positive signal was separated by gel filtration column and induced proliferative activity for Burkholderia gut symbiont cells.


Assuntos
Infecções por Burkholderia/metabolismo , Burkholderia/fisiologia , Proteínas de Insetos/metabolismo , Insetos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Animais , Processos de Crescimento Celular , Microbioma Gastrointestinal , Simbiose
13.
Emerg Microbes Infect ; 9(1): 1892-1899, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32811346

RESUMO

Postoperative endophthalmitis (PE) is the devastating complication that frequently results in vision loss. Recently, enterococcus have emerged as a major cause of PE in several countries and resulted in poor visual outcome. However, the reason remains elusive. We investigate whether selection pressure of fluoroquinolone exerts effects on microorganism profiles isolated from PE. Medical records of patients who were diagnosed with PE at eight resident training institutions between January 2004 and December 2015 were reviewed. The most common isolate was Enterococcus faecalis (28.0%), followed by Staphylococcus epidermidis (18.6%) and other coagulase negative Staphylococci (7.6%). However, the rates of E. faecalis isolated from conjunctival microbes were 6.2% (16/257) and their resistance to fluoroquinolones was higher than those of S. epidermidis. In vitro and in vivo co-culture models of E. faecalis and S. epidermidis were established for survival assays after administration of fourth-generation fluoroquinolone. In in vitro co-culture model, the survival assay of E. faecalis and S. epidermidis against the treatment of moxifloxacin showed that E. faecalis survived significantly better than S. epidermidis in the presence of moxifloxacin 1 µg/mL and more. In in vivo co-culture model, E. faecalis survived significantly better than S. epidermidis after topical treatment of moxifloxacin (5 mg/mL). E. faecalis has been the most common causative strain of PE in Korea. We suggest that the increase of E. faecalis in PE could be associated with the selection pressure of fourth-generation fluoroquinolone. Summary: Enterococcus spp. have emerged as a leading causative strain of postoperative endophthalmitis in 11-year clinical data. We suggest that the increase of Enterococcus spp. is associated with the selection pressure of fourth-generation fluoroquinolone.


Assuntos
Endoftalmite/microbiologia , Enterococcus/crescimento & desenvolvimento , Fluoroquinolonas/farmacologia , Procedimentos Cirúrgicos Oftalmológicos/efeitos adversos , Complicações Pós-Operatórias/microbiologia , Administração Tópica , Animais , Técnicas de Cocultura , Farmacorresistência Bacteriana Múltipla , Endoftalmite/etiologia , Enterococcus/classificação , Enterococcus/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Coelhos , Seleção Genética
14.
Dev Comp Immunol ; 99: 103399, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195052

RESUMO

Recent studies have provided molecular evidence that gut symbiotic bacteria modulate host insect development, fitness and reproduction. However, the molecular mechanisms through which gut symbionts regulate these aspects of host physiology remain elusive. To address these questions, we prepared two different Riptortus-Burkholderia insect models, Burkholderia gut symbiont-colonized (Sym) Riptortus pedestris insects and gut symbiont-noncolonized (Apo) insects. Upon LC-MS analyses, juvenile hormone III skipped bisepoxide (JHSB3) was newly identified from Riptortus Apo- and Sym-female and male adults' insect hemolymph and JHSB3 titer in the Apo- and Sym-female insects were measured because JH is important for regulating reproduction in adult insects. The JHSB3 titer in the Sym-females were consistently higher compared to those of Apo-females. Since previous studies reported that Riptortus hexamerin-α and vitellogenin proteins were upregulated by the topical abdominal application of a JH-analog, chemically synthesized JHSB3 was administered to Apo-females. As expected, the hexamerin-α and vitellogenin proteins were dramatically increased in the hemolymph of JHSB3-treated Apo-females, resulting in increased egg production compared to that in Sym-females. Taken together, these results demonstrate that colonization of Burkholderia gut symbiont in the host insect stimulates biosynthesis of the heteroptera-specific JHSB3, leading to larger number of eggs produced and enhanced fitness in Riptortus host insects.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Hormônios Juvenis/metabolismo , Simbiose , Animais , Feminino , Fertilidade/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Hemolinfa/metabolismo , Heterópteros/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/administração & dosagem , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo
15.
Dev Comp Immunol ; 60: 202-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26875632

RESUMO

Riptortus pedestris harboring Burkholderia symbiont is a useful symbiosis model to study the molecular interactions between insects and bacteria. We recently reported that the lipopolysaccharide O-antigen is absent in the Burkholderia symbionts isolated from Riptortus guts. Here, we investigated the symbiotic role of O-antigen comprehensively in the Riptortus-Burkholderia model. Firstly, Burkholderia mutant strains deficient of O-antigen biosynthesis genes were generated and confirmed for their different patterns of the lipopolysaccharide by electrophoretic analysis. The O-antigen-deficient mutant strains initially exhibited a reduction of infectivity, having significantly lower level of symbiont population at the second-instar stage. However, both the wild-type and O-antigen mutant symbionts exhibited a similar level of symbiont population from the third-instar stage, indicating that the O-antigen deficiency did not affect the bacterial persistence in the host midgut. Taken together, we showed that the lipopolysaccharide O-antigen of gut symbiont plays an exclusive role in the initial symbiotic association.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Antígenos O/fisiologia , Animais , Antibacterianos/farmacologia , Larva/microbiologia , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Simbiose
16.
Dev Comp Immunol ; 64: 75-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26774501

RESUMO

Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut.


Assuntos
Infecções Bacterianas/imunologia , Burkholderia/imunologia , Hemípteros/imunologia , Imunidade Inata , Intestinos/imunologia , Microbiota , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Bacterianas/microbiologia , Parede Celular/metabolismo , Suscetibilidade a Doenças , Intestinos/microbiologia , Modelos Animais , Simbiose
17.
J Vaccines Vaccin ; 7(4)2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27595050

RESUMO

We demonstrate that a peptoid composed of five monomers and attached via a maleimide linker to a carrier protein elicits anti-peptoid, anti-linker and anti-carrier antibodies in rabbits. Specific anti-peptoid antibodies were affinity purified and used to reproducibly retrieve three specific peptoid-coupled beads from 20,000 irrelevant peptoid-beads using magnetic screening.

18.
Dev Comp Immunol ; 53(1): 265-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26164198

RESUMO

The relation between gut symbiosis and immunity has been reported in various animal model studies. Here, we corroborate the effect of gut symbiont to host immunity using the bean bug model. The bean bug, Riptortus pedestris, is a useful gut symbiosis model due to the monospecific gut symbiont, genus Burkholderia. To examine the effect of gut symbiosis to host immunity, we generated the gut symbiont-harboring (symbiotic) insect line and the gut symbiont-lacking (aposymbiotic) insect line. Upon bacterial challenges, the symbiotic Riptortus exhibited better survival than aposymbiotic Riptortus. When cellular immunity was inhibited, the symbiotic Riptortus still survived better than aposymbioic Riptortus, suggesting stronger humoral immunity. The molecular basis of the strong humoral immunity was further confirmed by the increase of hemolymph antimicrobial activity and antimicrobial peptide expression in the symbiotic insects. Taken together, our data clearly demonstrate that Burkhoderia gut symbiont positively affect the Riptortus systemic immunity.


Assuntos
Burkholderia/imunologia , Microbioma Gastrointestinal/imunologia , Heterópteros/imunologia , Heterópteros/microbiologia , Simbiose , Animais , Escherichia coli K12/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Hemolinfa/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Imunidade Inata/imunologia , Fagocitose/imunologia , Staphylococcus aureus/imunologia
19.
FEBS Lett ; 589(19 Pt B): 2784-90, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26318755

RESUMO

We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont.


Assuntos
Burkholderia/citologia , Burkholderia/fisiologia , Heterópteros/microbiologia , Intestinos/microbiologia , Simbiose , Animais , Burkholderia/enzimologia , Burkholderia/genética , N-Acetil-Muramil-L-Alanina Amidase/deficiência , N-Acetil-Muramil-L-Alanina Amidase/genética , Fenótipo , Deleção de Sequência
20.
Dev Comp Immunol ; 53(1): 79-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26159404

RESUMO

Because gut symbiotic bacteria affect host biology, host insects are expected to evolve some mechanisms for regulating symbiont population. The bean bug, Riptortus pedestris, harbors the Burkholderia genus as a gut symbiont in the midgut organ, designated as the M4 region. Recently, we demonstrated that the lysate of M4B, the region adjacent to M4, harbors potent antibacterial activity against symbiotic Burkholderia but not to cultured Burkholderia. However, the bona fide substance responsible for observed antibacterial activity was not identified in the previous study. Here, we report that cathepsin-L-like protease purified from the lysate of M4B showed strong antibacterial activity against symbiotic Burkholderia but not the cultured Burkholderia. To further confirm this activity, recombinant cathepsin-L-like protease expressed in Escherichia coli also showed antibacterial activity against symbiotic Burkholderia. These results suggest that cathepsin-L-like protease purified from the M4B region plays a critical role in controlling the population of the Burkholderia gut symbiont.


Assuntos
Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Catepsina L/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Heterópteros/microbiologia , Sequência de Aminoácidos , Animais , Burkholderia/crescimento & desenvolvimento , Catepsina L/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Heterópteros/imunologia , Dados de Sequência Molecular , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA