Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536750

RESUMO

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Assuntos
Autofagia , Melanossomas , Melanossomas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantonas , Melanoma Experimental , Animais , Camundongos
2.
Pestic Biochem Physiol ; 200: 105834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582576

RESUMO

Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 µM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 µM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.


Assuntos
Eucalyptus , Inseticidas , Estilbenos , Acetilcolinesterase/metabolismo , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Eucalyptus/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Folhas de Planta/metabolismo
3.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203502

RESUMO

Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.


Assuntos
Carcinogênese , Epigênese Genética , Humanos , Terapia Combinada , Domínio Catalítico , Janus Quinases , Microambiente Tumoral
4.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513238

RESUMO

This study aimed to isolate bacterial neuraminidase (BNA) inhibitory O-methylated quercetin derivatives from the aerial parts of S. pubescens. All the isolated compounds were identified as O-methylated quercetin (1-4), which were exhibited to be noncompetitive inhibitors against BNA, with IC50 ranging from 14.0 to 84.1 µM. The responsible compounds (1-4) showed a significant correlation between BNA inhibitory effects and the number of O-methyl groups on quercetin; mono (1, IC50 = 14.0 µM) > di (2 and 3, IC50 = 24.3 and 25.8 µM) > tri (4, IC50 = 84.1 µM). In addition, the binding affinities between BNA and inhibitors (1-4) were also examined by fluorescence quenching effect with the related constants (KSV, KA, and n). The most active inhibitor 1 possessed a KSV with 0.0252 × 105 L mol-1. Furthermore, the relative distribution of BNA inhibitory O-methylated quercetins (1-4) in S. pubescens extract was evaluated using LC-Q-TOF/MS analysis.


Assuntos
Asteraceae , Quercetina , Quercetina/farmacologia , Neuraminidase , Sigesbeckia , Asteraceae/química , Componentes Aéreos da Planta , Extratos Vegetais/farmacologia
5.
Curr Issues Mol Biol ; 44(7): 2856-2867, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35877420

RESUMO

In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.

6.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012631

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) is a tumor-suppressor gene that suppresses tumorigenesis and metastasis of tumors and increases sensitivity to anti-cancer drugs. In this review, we summarize information on the clinicopathological characteristics of tumor patients according to NDRG2 expression in various tumor tissues and provide information on the metastasis inhibition-related cell signaling modulation by NDRG2. Loss of NDRG2 expression is a prognostic factor that correlates with TNM grade and tumor metastasis and has an inverse relationship with patient survival in various tumor patients. NDRG2 inhibits cell signaling, such as AKT-, NF-κB-, STAT3-, and TGF-ß-mediated signaling, to induce tumor metastasis, and induces activation of GSK-3ß which has anti-tumor effects. Although NDRG2 operates as an adaptor protein to mediate the interaction between kinases and phosphatases, which is essential in regulating cell signaling related to tumor metastasis, the molecular mechanism of NDRG2 as an adapter protein does not seem to be fully elucidated. This review aims to assist the research design regarding NDRG2 function as an adaptor protein and suggests NDRG2 as a molecular target to inhibit tumor metastasis and improve the prognosis in tumor patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268650

RESUMO

Melanin pigment produced in melanocytes plays a protective role against ultraviolet radiation. Selective destruction of melanocytes causes chronic depigmentation conditions such as vitiligo, for which there are very few specific medical treatments. Here, we found that fraxinol, a natural coumarin from Fraxinus plants, effectively stimulated melanogenesis. Treatment of B16-F10 cells with fraxinol increased the melanin content and tyrosinase activity in a concentration-dependent manner without causing cytotoxicity. Additionally, fraxinol enhanced the mRNA expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Fraxinol also increased the expression of microphthalmia-associated transcription factor at both mRNA and protein levels. Fraxinol upregulated the phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). Furthermore, H89, a cAMP-dependent protein kinase A inhibitor, decreased fraxinol-induced CREB phosphorylation and microphthalmia-associated transcription factor expression and significantly attenuated the fraxinol-induced melanin content and intracellular tyrosinase activity. These results suggest that fraxinol enhances melanogenesis via a protein kinase A-mediated mechanism, which may be useful for developing potent melanogenesis stimulators.


Assuntos
Fator de Transcrição Associado à Microftalmia
8.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068714

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that consists of Crohn's disease (CD) and ulcerative colitis (UC). Cytokines are thought to be key mediators of inflammation-mediated pathological processes of IBD. These cytokines play a crucial role through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling pathways. Several small molecules inhibiting JAK have been used in clinical trials, and one of them has been approved for IBD treatment. Many anti-inflammatory phytochemicals have been shown to have potential as new drugs for IBD treatment. This review describes the significance of the JAK-STAT pathway as a current therapeutic target for IBD and discusses the recent findings that phytochemicals can ameliorate disease symptoms by affecting the JAK-STAT pathway in vivo in IBD disease models. Thus, we suggest that phytochemicals modulating JAK-STAT pathways are potential candidates for developing new therapeutic drugs, alternative medicines, and nutraceutical agents for the treatment of IBD.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Janus Quinases/metabolismo , Compostos Fitoquímicos/uso terapêutico , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos , Compostos Fitoquímicos/farmacologia
9.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131547

RESUMO

Tumor cell resistance to anti-cancer drugs is a major obstacle in tumor therapy. In this study, we investigated the mechanism of cordycepin-mediated resensitization to cisplatin in T24R2 cells, a T24-derived cell line. Treatment with cordycepin or cisplatin (2 µg/mL) alone failed to induce cell death in T24R2 cells, but combination treatment with these drugs significantly induced apoptosis through mitochondrial pathways, including depolarization of mitochondrial membranes, decrease in anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, and increase in pro-apoptotic proteins Bak and Bax. High expression levels of MDR1 were the cause of cisplatin resistance in T24R2 cells, and cordycepin significantly reduced MDR1 expression through inhibition of MDR1 promoter activity. MDR1 promoter activity was dependent on transcription factor Ets-1 in T24R2 cells. Although correlation exists between MDR1 and Ets-1 expression in bladder cancer patients, active Ets-1, Thr38 phosphorylated form (pThr38), was critical to induce MDR1 expression. Cordycepin decreased pThr-38 Ets-1 levels and reduced MDR1 transcription, probably through its effects on PI3K signaling, inducing the resensitization of T24R2 cells to cisplatin. The results suggest that cordycepin effectively resensitizes cisplatin-resistant bladder cancer cells to cisplatin, thus serving as a potential strategy for treatment of cancer in patients with resistance to anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Desoxiadenosinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Proteína Proto-Oncogênica c-ets-1/metabolismo
10.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075108

RESUMO

Apoptosis pathways in cells are classified into two pathways: the extrinsic pathway, mediated by binding of the ligand to a death receptor and the intrinsic pathway, mediated by mitochondria. Apoptosis is regulated by various proteins such as Bcl-2 (B-cell lymphoma 2) family and cellular FLICE (Fas-associated Death Domain Protein Interleukin-1ß-converting enzyme)-inhibitory protein (c-FLIP), which have been reported to inhibit caspase-8 activity. In this study, it was found that C5 (3ß-Acetyl-nor-erythrophlamide), a compound of cassaine diterpene amine from Erythrophleum fordii, induced cell apoptosis in a variety of types of cancer cells. Induction of apoptosis in cancer cells by C5 was inversely related to the level of Bcl-2 expression. Overexpression of Bcl-2 into cancer cells significantly decreased C5-induced apoptosis. It was also found that treatment of cancer cells with a caspase-8 inhibitor significantly suppressed C5-induced apoptosis; however, treatment with caspase-9 inhibitors did not affect C5-induced apoptosis, suggesting that C5 may induce apoptosis via the extrinsic pathway by activating caspase-8. It was confirmed that treatment with C5 alone induced an association of FADD with procaspase-8; however, overexpression of c-FLIP decreased C5-induced caspase-8 activation. In conclusion, C5 could be utilized as a new useful lead compound for the development of an anti-cancer agent that has the goal of apoptosis.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Alcaloides/química , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fabaceae/química , Fabaceae/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfoma/metabolismo , Linfoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
11.
Molecules ; 25(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443441

RESUMO

Puerol A (1) from Amorpha fruticosa showed highly potent inhibition against both monophenolase (IC50 = 2.2 µM) and diphenolase (IC50 = 3.8 µM) of tyrosinase. We tried to obtain a full story of enzyme inhibitory behavior for inhibitor 1 because the butenolide skeleton has never been reported as a tyrosinase inhibitor. Puerol A was proved as a reversible, competitive, simple slow-binding inhibitor, according to the respective parameters; k3 = 0.0279 µM-1 min-1 and k4 = 0.003 min-1. A longer lag-phase and a reduced static-state activity of the enzyme explained that puerol A had a tight formation of the complex with Emet. Dose-dependent inhibition was also confirmed by high-performance liquid chromatography (HPLC) analysis using N-acetyl-l-tyrosine as a substrate, which was completely inhibited at 20 µM. A high binding affinity of 1 to tyrosinase was confirmed by fluorescence quenching analysis. Moreover, puerol A decreased melanin content in the B16 melanoma cell dose-dependently with an IC50 of 11.4 µM.


Assuntos
Inibidores Enzimáticos/química , Fabaceae/química , Melanoma Experimental/tratamento farmacológico , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Ligação Competitiva/efeitos dos fármacos , Catecol Oxidase/antagonistas & inibidores , Catecol Oxidase/química , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Melanoma Experimental/enzimologia , Camundongos , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/química , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Tirosina/análogos & derivados , Tirosina/química
12.
Mol Carcinog ; 58(7): 1221-1233, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887599

RESUMO

Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3ß at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3ß-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quimioprevenção , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
13.
Mol Biol Rep ; 45(3): 373-377, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29611024

RESUMO

Insampaedok-san (IPS) is one of the East Asian traditional medicines which have been prescribed for hundreds of years to treat common cold and headache. Although many herbs and prescriptions are known to have significant activities against diseases, only a limited number of reports and scientific evidences on their efficacies are available. To identify anticancer effect against colon cancer, traditional prescription IPS and its fermented IPS (FIPS) were examined by in vitro molecular biological analysis. IPS water extract was fermented, lyophilized, and examined by cytotoxicity, cell cycle, and western blot assays, using cancer cell lines. Resultantly, FIPS showed significant cytotoxicities inducing caspase dependent apoptosis and activation of caspase-3 (CASP3) and poly (ADP-ribose) polymerase (PARP) cleavage in colon cancer cell line SW620. These findings can be useful for development of anticancer functional food or complementary and alternative medicine, with remaining in-depth molecular functional studies.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Fermentação , Humanos , Projetos Piloto , Poli(ADP-Ribose) Polimerases/metabolismo
14.
Neurodegener Dis ; 18(2-3): 84-90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621788

RESUMO

BACKGROUND/AIMS: Dysphagia, a symptom of multiple system atrophy (MSA), is a major clinical concern. In this study, we investigate the characteristics of early oropharyngeal dysphagia (OD) in patients with MSA, and the differences between MSA subtypes. METHODS: Patients enrolled in the study had previously been diagnosed with MSA at the clinic of the Department of Neurology, and had been referred for a videofluoroscopic swallowing study (VFSS), between 2005 and 2014, to check for dysphagia. The clinical characteristics and VFSS findings were analyzed and compared between the MSA subtypes. RESULTS: This study enrolled 59 patients with MSA (24 men; 31 with MSA-P, 21 with MSA-C, and 7 with MSA-PC). Dysphagia symptoms were mostly limited to aspiration symptoms (90.48%) in patients with MSA-C, while difficulty in swallowing, increased mealtime, and drooling were frequent in those with MSA-P. The most common VFSS finding amongst patients was vallecular residue (n = 53, 89.8%), followed by penetration/aspiration (n = 40, 67.8%), and coating of the pharyngeal wall (n = 39, 66.1%). Comparison analysis between subtypes showed that apraxia and vallecular residue were more frequent and severe in MSA-P than in MSA-C (p = 0.033 and p = 0.010, respectively). CONCLUSION: Understanding early OD characteristics in patients with MSA and the differences between MSA subtypes could be helpful in managing dysphagia in patients with MSA. Several dysphagia symptoms similar to those of Parkinson disease were frequently observed in MSA-P, but not in MSA-C. A follow-up study is needed to elucidate the natural course of OD in MSA patients and the difference between MSA subtypes.


Assuntos
Transtornos de Deglutição/complicações , Transtornos de Deglutição/diagnóstico , Atrofia de Múltiplos Sistemas/complicações , Atrofia de Múltiplos Sistemas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
15.
Exp Dermatol ; 26(7): 585-591, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27714857

RESUMO

Melanogenesis is a key pathway for the regulation of skin pigmentation and the development of skin-lightening/skin-whitening drugs or cosmetics. In this study, we found that ß-mangostin from seedcases of Garcinia mangostana inhibited α-melanocyte-stimulating hormone (α-MSH)-mediated melanogenesis in B16F10 melanoma cells and a three-dimensional human skin model. ß-Mangostin significantly inhibited the protein level of tyrosinase induced by α-MSH in UPS (ubiquitin proteasome system)-independent and lysosome-dependent manner. The inhibition of autophagy by 3-methyladenine treatment or ATG5 knockdown effectively recovered premelanosome protein as well as tyrosinase degraded by the ß-mangostin treatment. However, rapamycin, a representative non-selective autophagy inducer, triggered autophagy in α-MSH-stimulated cells, which was characterized by a considerable decrease in p62, but it was unable to inhibit melanogenesis. Melanosome-engulfing autophagosomes were observed using transmission electron microscopy. Furthermore, previously formed melanin could be degraded effectively in an autophagy-dependent manner in ß-mangostin-treated cells. Taken together, our results suggest that ß-mangostin inhibits the melanogenesis induced by α-MSH via an autophagy-dependent mechanism, and thus, the depigmentation effect of ß-mangostin may depend on autophagy targeted at the melanosome rather than non-selective autophagy.


Assuntos
Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Xantonas/farmacologia , alfa-MSH/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia , Sobrevivência Celular , Garcinia mangostana , Humanos , Inflamação , Melaninas/metabolismo , Melanócitos/citologia , Melanoma Experimental , Melanossomas/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Monofenol Mono-Oxigenase/metabolismo , Pigmentação , Extratos Vegetais/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Sementes/química , Pele/metabolismo , Ubiquitina/metabolismo
16.
J Enzyme Inhib Med Chem ; 32(1): 1195-1202, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28933230

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC50 = 1.9-8.2 µM) than α-glucosidase (IC50 = 2.2-78.9 µM). Mimulone (1) was the most effective against PTP1B with IC50 = 1.9 µM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC50 = 2.2 µM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in Vmax, an increase of Km, and Kik/Kiv ratio ranging between 2.66 and 3.69.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Magnoliopsida/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Humanos , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem ; 24(2): 153-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706112

RESUMO

Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson's disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 µg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50=500 nM), significantly. Another potent inhibitor 1 (IC50=2.9 µM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Ki(app)=1.48 nM, k3=0.0033 nM(-1) min(-1) and k4=0.0049 min(-1). Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 µM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Fabaceae/química , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Isoflavonas/química , Isoflavonas/isolamento & purificação , Melaninas/biossíntese , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
J Immunol ; 190(9): 4877-86, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530146

RESUMO

Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.


Assuntos
Adiponectina/deficiência , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Linfoma/imunologia , Linfoma/patologia , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/metabolismo , Células Mieloides/imunologia , Adiponectina/genética , Adiponectina/imunologia , Adiponectina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Células CHO , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cricetinae , Genes MHC Classe I , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Linfoma/genética , Linfoma/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
19.
Nat Med ; 13(10): 1248-52, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17891146

RESUMO

Toll-like receptors (TLRs) recognize conserved microbial structures called pathogen-associated molecular patterns. Signaling from TLRs leads to upregulation of co-stimulatory molecules for better priming of T cells and secretion of inflammatory cytokines by innate immune cells. Lymphocyte-deficient hosts often die of acute infection, presumably owing to their lack of an adaptive immune response to effectively clear pathogens. However, we show here that an unleashed innate immune response due to the absence of residential T cells can also be a direct cause of death. Viral infection or administration of poly(I:C), a ligand for TLR3, led to cytokine storm in T-cell- or lymphocyte-deficient mice in a fashion dependent on NK cells and tumor necrosis factor. We have further shown, through the depletion of CD4+ and CD8+ cells in wild-type mice and the transfer of T lymphocytes into Rag-1-deficient mice, respectively, that T cells are both necessary and sufficient to temper the early innate response. In addition to the effects of natural regulatory T cells, close contact of resting CD4+CD25-Foxp3- or CD8+ T cells with innate cells could also suppress the cytokine surge by various innate cells in an antigen-independent fashion. Therefore, adaptive immune cells have an unexpected role in tempering initial innate responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Homeodomínio/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Poli I-C/farmacologia , Baço/citologia , Baço/imunologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia
20.
Autophagy ; : 1-2, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38899611

RESUMO

Dysregulation of melanin homeostasis is implicated in causing skin pigmentation disorders, such as melasma due to hyperpigmentation and vitiligo due to hypopigmentation. Although the synthesis of melanin has been well studied, the removal of the formed skin pigment requires more research. We determined that ß-mangostin, a plant-derived metabolite, induces the degradation of already-formed melanin in the mouse B16F10 cell line. The whitening effect of ß-mangostin is mediated by macroautophagy/autophagy, as it was abolished by the knockdown of ATG5 or RB1CC1/FIP200, and by treatment with 3-methyladenine, a phosphatidylinositol 3-kinase complex inhibitor. However, the exact autophagy mechanism of melanosome degradation remains unknown. Selective autophagy for a specific cellular organelle requires specific E3-ligases and autophagic receptors for the target organelle. In this study, an E3-ligase, RCHY1, and an autophagy receptor, OPTN (optineurin), were identified as being essential for melanophagy in the ß-mangostin-treated B16F10 cell line. As per our knowledge, this is the first report of a specific mechanism for the degradation of melanosomes, the target organelle of melanophagy. These findings are expected to broaden the scope of melanin homeostasis research and can be exploited for the development of therapeutics for skin pigmentation disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA