Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nat Genet ; 55(2): 221-231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624345

RESUMO

Despite advances in predicting physical peptide-major histocompatibility complex I (pMHC I) binding, it remains challenging to identify functionally immunogenic neoepitopes, especially for MHC II. By using the results of >36,000 immunogenicity assay, we developed a method to identify pMHC whose structural alignment facilitates T cell reaction. Our method predicted neoepitopes for MHC II and MHC I that were responsive to checkpoint blockade when applied to >1,200 samples of various tumor types. To investigate selection by spontaneous immunity at the single epitope level, we analyzed the frequency spectrum of >25 million mutations in >9,000 treatment-naive tumors with >100 immune phenotypes. MHC II immunogenicity specifically lowered variant frequencies in tumors under high immune pressure, particularly with high TCR clonality and MHC II expression. A similar trend was shown for MHC I neoepitopes, but only in particular tissue types. In summary, we report immune selection imposed by MHC II-restricted natural or therapeutic T cell reactivity.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Epitopos/genética , Linfócitos T , Peptídeos/química , Peptídeos/metabolismo
2.
Sci Rep ; 13(1): 22482, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110532

RESUMO

Genomic hypomethylation has recently been identified as a determinant of therapeutic responses to immune checkpoint blockade (ICB). However, it remains unclear whether this approach can be applied to cell-free DNA (cfDNA) and whether it can address the issue of low tumor purity encountered in tissue-based methylation profiling. In this study, we developed an assay named iMethyl, designed to estimate the genomic hypomethylation status from cfDNA. This was achieved through deep targeted sequencing of young LINE-1 elements with > 400,000 reads per sample. iMethyl was applied to a total of 653 ICB samples encompassing lung cancer (cfDNA n = 167; tissue n = 137; cfDNA early during treatment n = 40), breast cancer (cfDNA n = 91; tissue n = 50; PBMC n = 50; cfDNA at progression n = 44), and ovarian cancer (tissue n = 74). iMethyl-liquid predicted ICB responses accurately regardless of the tumor purity of tissue samples. iMethyl-liquid was also able to monitor therapeutic responses early during treatment (3 or 6 weeks after initiation of ICB) and detect progressive hypomethylation accompanying tumor progression. iMethyl-tissue had better predictive power than tumor mutation burden and PD-L1 expression. In conclusion, our iMethyl-liquid method allows for reliable noninvasive prediction, early evaluation, and monitoring of clinical responses to ICB therapy.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Feminino , Ácidos Nucleicos Livres/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Genômica/métodos , Pulmão/patologia , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA