Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
2.
Phys Chem Chem Phys ; 26(14): 10769-10783, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516907

RESUMO

To effectively utilize MXenes, a family of two-dimensional materials, in various applications that include thermoelectric devices, semiconductors, and transistors, their thermodynamic and mechanical properties, which are closely related to their stability, must be understood. However, exploring the large chemical space of MXenes and verifying their stability using first-principles calculations are computationally expensive and inefficient. Therefore, this study proposes a machine learning (ML)-based high-throughput MXene screening framework to identify thermodynamically stable MXenes and determine their mechanical properties. A dataset of 23 857 MXenes with various compositions was used to validate this framework, and 48 MXenes were predicted to be stable by ML models in terms of heat of formation and energy above the convex hull. Among them, 45 MXenes were validated using density functional theory calculations, of which 23 MXenes, including Ti2CClBr and Zr2NCl2, have not been previously known for their stability, confirming the effectiveness of this framework. The in-plane stiffness, shear moduli, and Poisson's ratio of the 45 MXenes were observed to vary widely according to their constituent elements, ranging from 90.11 to 198.02 N m-1, 64.00 to 163.40 N m-1, and 0.19 to 0.58, respectively. MXenes with Group-4 transition metals and halogen surface terminations were shown to be both thermodynamically stable and mechanically robust, highlighting the importance of electronegativity difference between constituent elements. Structurally, a smaller volume per atom and minimum bond length were determined to be preferable for obtaining mechanically robust MXenes. The proposed framework, along with an analysis of these two properties of MXenes, demonstrates immense potential for expediting the discovery of stable and robust MXenes.

3.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067582

RESUMO

Syndecan-4 (SDC4) consists of transmembrane heparan sulfate proteoglycan (HSPG) belonging to the syndecan family. It is present in most cell types of Mammalia. Its structure contains a heparan-sulfate-modified extracellular domain, a single transmembrane domain, and a short C-terminal cytoplasmic domain. Regarding the overall cellular function of SDC4, other cells or ligands can bind to its ecto-domain. In addition, 4,5-bisphosphate phosphatidylinositol (PIP2) or protein kinase Cα can bind to its cyto-domain to activate downstream signaling pathways. To understand the signal transduction mechanism of syndecan, it is important to know the interactions between their actual structure and function in vivo. Therefore, it is important to identify the structure of SDC4 to understand the ligand binding behavior of SDC4. In this study, expression and purification were performed to reveal structures of the short ecto-domain, the transmembrane domain, and the cytoplasmic domain of Syd4-eTC (SDC4). Solution-state NMR spectroscopy and solid-state NMR spectroscopy were used to study the structure of Syd4-eTC in membrane environments and to demonstrate the interaction between Syd4-eTC and PIP2.


Assuntos
Transdução de Sinais , Sindecana-4 , Sindecana-4/metabolismo , Citoplasma/metabolismo , Transdução de Sinais/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Espectroscopia de Ressonância Magnética
4.
Angew Chem Int Ed Engl ; 62(32): e202304196, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186340

RESUMO

Complex nuclear magnetic resonance (NMR) signals of organic compounds containing multiple analogous substructures or mixtures pose a significant challenge to structural identification, thus resulting in frequent misassignment of structures. The GEMSTONE method, a single-scan technique that selectively excites a specific proton signal among the crowded NMR signals, was recently proposed as a solution. However, its extension to the polarization transfer method for heteronuclear spin systems was unsuccessful. Herein, we present an extension method that addresses the altered heteronuclear polarization transfer efficiency and enables the acquisition of ultraselective 13 C and 1 H-13 C correlation NMR subspectra with hertz-level signal selectivity in both dimensions. We demonstrate the effectiveness of this technique in the structural analysis of a chromopeptide pharmaceutical and a diastereomeric mixture of a fungicide.

5.
RNA ; 26(10): 1464-1480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32631843

RESUMO

Many eukaryotes use RNA processing, including alternative splicing, to express multiple gene products from the same gene. The budding yeast Saccharomyces cerevisiae has been successfully used to study the mechanism of splicing and the splicing machinery, but alternative splicing in yeast is relatively rare and has not been extensively studied. Alternative splicing of SKI7/HBS1 is widely conserved, but yeast and a few other eukaryotes have replaced this one alternatively spliced gene with a pair of duplicated, unspliced genes as part of a whole genome doubling (WGD). We show that other examples of alternative splicing known to have functional consequences are widely conserved within Saccharomycotina. A common mechanism by which alternative splicing has disappeared is by replacement of an alternatively spliced gene with duplicate unspliced genes. This loss of alternative splicing does not always take place soon after duplication, but can take place after sufficient time has elapsed for speciation. Saccharomycetaceae that diverged before WGD use alternative splicing more frequently than S. cerevisiae, suggesting that WGD is a major reason for infrequent alternative splicing in yeast. We anticipate that WGDs in other lineages may have had the same effect. Having observed that two functionally distinct splice-isoforms are often replaced by duplicated genes allowed us to reverse the reasoning. We thereby identify several splice isoforms that are likely to produce two functionally distinct proteins because we find them replaced by duplicated genes in related species. We also identify some alternative splicing events that are not conserved in closely related species and unlikely to produce functionally distinct proteins.


Assuntos
Processamento Alternativo/genética , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Evolução Molecular , Duplicação Gênica/genética , Genoma/genética , Isoformas de Proteínas/genética
6.
Photochem Photobiol Sci ; 21(12): 2217-2230, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36103110

RESUMO

Rosa davurica is widely used to treat various kinds of diseases because of its high antioxidant, antiviral and anti-inflammatory activities. This use of plant-based materials as medicine is called phytomedicine and has been widely practiced since time immemorial. However, the pharmacological mechanism of R. davurica in skin photoaging is not yet fully understood. Therefore, this study was carried out to evaluate the recovery effects of R. davurica leaf extracts (RDE) in UVB-irradiated human skin keratinocytes (HaCaTs) and investigate whether RDE is a potential therapeutic agent against skin photoaging. The expression of aging-related markers including mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1), nuclear factor-κB (NF-κB), and nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) was evaluated using Western blot analysis. The reactive oxygen species (ROS) was also used by FACS in HaCaTs. Findings indicated that RDE is efficient in scavenging free radicals and dose-dependently reducing ROS generation. Furthermore, RDE notably decreased UVB-induced matrix metalloproteinase-1 (MMP-1) expression through inhibition of MAPK/AP-1 and NF-κB signaling pathways as well as induced blocking of extracellular matrix (ECM) degradation in UVB-irradiated HaCaTs. In addition, RDE improved Nrf2/HO-1 signaling that increases oxidative defense capacity and enhances transforming growth factor-beta (TGF-ß) signaling activation to promote procollagen type I synthesis, relieving UVB-induced skin cell damage. In conclusion, the protective effects of RDE on skin cellular components suggest that it has a high biological potential for skin protection from UVB-induced skin photoaging and is a good candidate for drug and cosmetic application.


Assuntos
Extratos Vegetais , Rosa , Envelhecimento da Pele , Humanos , Heme Oxigenase-1 , Proteínas Quinases Ativadas por Mitógeno , Fator 2 Relacionado a NF-E2 , NF-kappa B , Rosa/química , Fator de Transcrição AP-1 , Envelhecimento da Pele/efeitos dos fármacos , Células HaCaT , Extratos Vegetais/farmacologia , Raios Ultravioleta
7.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501999

RESUMO

In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases.


Assuntos
Idioma , Aprendizagem
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614076

RESUMO

Cytokine imbalance is one of the causes of inflammation. Inflammation has yet to be adequately treated without side effects. Therefore, we tried to develop a peptide drug with minimal side effects. Peptide drugs have the advantage of being bio-friendly and bio-specific. In a previous study, three peptides with anti-inflammatory activity were derived based on a truncated IK (tIK) protein, which was a fragment of the IK protein with anti-inflammatory effects. The objective of this study was to optimize the process of expressing, isolating, and purifying the three peptides using bacterial strains and describe the process. Circular dichroism and solution state nuclear magnetic resonance spectroscopy were performed on the final purified high-purity peptide and its secondary structure was also identified.


Assuntos
Anti-Inflamatórios , Peptídeos , Humanos , Anti-Inflamatórios/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Inflamação , Citocinas/metabolismo , Estrutura Secundária de Proteína , Dicroísmo Circular
9.
Proc Natl Acad Sci U S A ; 115(29): E6808-E6816, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967155

RESUMO

Eukaryotes maintain fidelity of gene expression by preferential degradation of aberrant mRNAs that arise by errors in RNA processing reactions. In Saccharomyces cerevisiae, Ski7 plays an important role in this mRNA quality control by mediating mRNA degradation by the RNA exosome. Ski7 was initially thought to be restricted to Saccharomyces cerevisiae and close relatives because the SKI7 gene and its paralog HBS1 arose by whole genome duplication (WGD) in a recent ancestor. We have recently shown that the preduplication gene was alternatively spliced and that Ski7 function predates WGD. Here, we use transcriptome analysis of diverse eukaryotes to show that diverse eukaryotes use alternative splicing of SKI7/HBS1 to encode two proteins. Although alternative splicing affects the same intrinsically disordered region of the protein, the pattern of splice site usage varies. This alternative splicing event arose in an early eukaryote that is a common ancestor of plants, animals, and fungi. Remarkably, through changes in alternative splicing and gene duplication, the Ski7 protein has diversified such that different species express one of four distinct Ski7-like proteins. We also show experimentally that the Saccharomyces cerevisiae SKI7 gene has undergone multiple changes that are incompatible with the Hbs1 function and may also have undergone additional changes to optimize mRNA quality control. The combination of transcriptome analysis in diverse eukaryotes and genetic analysis in yeast clarifies the mechanism by which a Ski7-like protein is expressed across eukaryotes and provides a unique view of changes in alternative splicing patterns of one gene over long evolutionary time.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Processamento Alternativo , Evolução Molecular , Duplicação Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918526

RESUMO

Naturally derived antibacterial peptides exhibit excellent pharmacological action without the risk of resistance, suggesting a potential role as biologicals. Lactophoricin-I (LPcin-I), found in the proteose peptone component-3 (PP3; lactophorin) of bovine milk, is known to exhibit antibiotic activity against Gram-positive and Gram-negative bacteria. Accordingly, we derived a new antibacterial peptide and investigated its structure-function relationship. This study was initiated by designing antibacterial peptide analogs with better antibacterial activity, less cytotoxicity, and shorter amino acid sequences based on LPcin-I. The structural properties of antibacterial peptide analogs were investigated via spectroscopic analysis, and the antibacterial activity was confirmed by measurement of the minimal inhibitory concentration (MIC). The structure and mechanism of the antibacterial peptide analog in the cell membrane were also studied via solution-state nuclear magnetic resonance (NMR) and solid-state NMR spectroscopy. Through 15N one-dimensional and two-dimensional NMR experiments and 31P NMR experiments, we suggest the 3D morphology and antibacterial mechanism in the phospholipid bilayer of the LPcin analog. This study is expected to establish a system for the development of novel antibacterial peptides and to establish a theoretical basis for research into antibiotic substitutes.


Assuntos
Antibacterianos/química , Caseínas/química , Proteínas do Leite/química , Fragmentos de Peptídeos/química , Animais , Bovinos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana
11.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833933

RESUMO

Biorenovation, a microbial enzyme-assisted degradation process of precursor compounds, is an effective approach to unraveling the potential bioactive properties of the derived compounds. In this study, we obtained a new compound, prunetin 4'-O-phosphate (P4P), through the biorenovation of prunetin (PRN), and investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells. The anti-inflammatory effect of P4P was evaluated by measuring the production of prostaglandin-E2 (PGE2), nitric oxide (NO), which is an inflammation-inducing factor, and related cytokines such as tumor necrosis factor-α (TNFα), interleukin-1ß (IL1ß), and interleukin-6 (IL6). The findings demonstrated that P4P was non-toxic to cells, and its inhibition of the secretion of NO-as well as pro-inflammatory cytokines-was concentration-dependent. A simultaneous reduction in the protein expression level of pro-inflammatory proteins such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was observed. Moreover, the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and nuclear factor kappa B (NFκB) was downregulated. To conclude, we report that biorenovation-based phosphorylation of PRN improved its anti-inflammatory activity. Cell-based in vitro assays further confirmed that P4P could be applied in the development of anti-inflammatory therapeutics.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Isoflavonas/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatos/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885976

RESUMO

Luteolin (LT), present in most plants, has potent anti-inflammatory properties both in vitro and in vivo. Furthermore, some of its derivatives, such as luteolin-7-O-glucoside, also exhibit anti-inflammatory activity. However, the molecular mechanisms underlying luteolin-3'-O-phosphate (LTP)-mediated immune regulation are not fully understood. In this paper, we compared the anti-inflammatory properties of LT and LTP and analyzed their molecular mechanisms of action; we obtained LTP via the biorenovation of LT. We investigated the anti-inflammatory activities of LT and LTP in macrophage RAW 264.7 cells. We confirmed from previously reported literature that LT inhibits the production of nitric oxide and prostaglandin E2, as well as the expression of inducible NO synthetase and cyclooxygenase-2. In addition, expressions of inflammatory genes and mediators, such as tumor necrosis factor-α, interleukin-6, and interleukin-1ß, were suppressed. LTP showed anti-inflammatory activity similar to LT, but better anti-inflammatory activity in all the experiments, while also inhibiting mitogen-activated protein kinase and nuclear factor-kappa B more effectively than LT. At a concentration of 10 µM, LTP showed differences of 2.1 to 44.5% in the activity compared to LT; it also showed higher anti-inflammatory activity. Our findings suggest that LTP has stronger anti-inflammatory activity than LT.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/efeitos adversos , Luteolina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatos/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Células RAW 264.7
13.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562140

RESUMO

Crataegus laevigata belongs to the family Rosaceae, which has been widely investigated for pharmacological effects on the circulatory and digestive systems. However, there is limited understanding about its anti-oxidative stress and anti-inflammatory effects on skin. In this study, 70% ethanol C. laevigata berry extract (CLE) was investigated on lipopolysaccharide (LPS)-stimulated keratinocytes. The LPS-induced overproduction of reactive oxygen species (ROS) was suppressed by the treatment with CLE. In response to ROS induction, the overexpression of inflammatory regulating signaling molecules including mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), and nuclear factor of activated T-cells (NFAT) were reduced in CLE-treated human keratinocytes. Consequently, CLE significantly suppressed the mRNA levels of pro-inflammatory chemokines and interleukins in LPS-stimulated cells. Our results indicated that CLE has protective effects against LPS-induced injury in an in vitro model and is a potential alternative agent for inflammatory treatment.


Assuntos
Crataegus/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , RNA Mensageiro/genética , Fator de Transcrição AP-1/metabolismo
14.
Molecules ; 26(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073317

RESUMO

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


Assuntos
Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição NFATC/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Compostos de Bifenilo/química , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Frutas/metabolismo , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Queratinócitos/citologia , Sistema de Sinalização das MAP Quinases , Myrtaceae , NAD(P)H Desidrogenase (Quinona)/metabolismo , Picratos/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
FASEB J ; 33(7): 8588-8599, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022353

RESUMO

Deregulation of Ca2+ signaling has been regarded as one of the key features of cancer progression. Lysine-deficient protein kinase 1 (WNK1), a major regulator of renal ion transport, regulates Ca2+ signaling through stimulating the phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to activate Gαq-coupled receptor/PLC-ß signaling. However, the contribution of WNK1-mediated Ca2+ signaling in the development of clear-cell renal-cell carcinoma (ccRCC) is yet unknown. We found that the canonical transient receptor potential channel (TRPC)6 was widely expressed in ccRCC tissues and functioned as a primary Ca2+ influx mechanism. We further identified that the expressions of WNK1, PI4KIIIα, TRPC6, and the nuclear factor of activated T cells cytoplasmic 1 (NFATc1) were elevated in the tumor tissues compared with the adjacent normal tissues. WNK1 expression was directly associated with the nuclear grade of ccRCC tissues. Functional experiments showed that WNK1 activated TRPC6-mediated Ca2+ influx and current by stimulating PI4KIIIα. Notably, the inhibition of WNK1-mediated TRPC6 activation and its downstream substrate calcineurin attenuated NFATc1 activation and the subsequent migration and proliferation of ccRCC. These findings revealed a novel perspective of WNK1 signaling in targeting the TRPC6-NFATc1 pathway as a therapeutic potential for renal-cell carcinoma.-Kim, J.-H., Hwang, K.-H., Eom, M., Kim, M., Park, E. Y., Jeong, Y., Park, K.-S., Cha, S.-K. WNK1 promotes renal tumor progression by activating TRPC6-NFAT pathway.


Assuntos
Rim/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
16.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977406

RESUMO

Rheumatoid arthritis, caused by abnormalities in the autoimmune system, affects about 1% of the population. Rheumatoid arthritis does not yet have a proper treatment, and current treatment has various side effects. Therefore, there is a need for a therapeutic agent that can effectively treat rheumatoid arthritis without side effects. Recently, research on pharmaceutical drugs based on peptides has been actively conducted to reduce negative effects. Because peptide drugs are bio-friendly and bio-specific, they are characterized by no side effects. Truncated-IK (tIK) protein, a fragment of IK protein, has anti-inflammatory effects, including anti-rheumatoid arthritis activity. This study focused on the fact that tIK protein phosphorylates the interleukin 10 receptor. Through homology modeling with interleukin 10, short tIK epitopes were proposed to find the essential region of the sequence for anti-inflammatory activity. TH17 differentiation experiments were also performed with the proposed epitope. A peptide composed of 18 amino acids with an anti-inflammatory effect was named tIK-18mer. Additionally, a tIK 9-mer and a 14-mer were also found. The procedure for the experimental expression of the proposed tIK series (9-mer, 14-mer, and 18-mer) using bacterial strain is discussed.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Homologia de Sequência , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Peptídeos/farmacologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Células Th17/citologia , Células Th17/efeitos dos fármacos
17.
J Neuroinflammation ; 16(1): 221, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727092

RESUMO

BACKGROUND: Obese mice on a high-fat diet (HFD) display signs of inflammation in the hypothalamic arcuate nucleus (ARC), a critical area for controlling systemic energy metabolism. This has been suggested as a key mechanism of obesity-associated hypothalamic dysfunction. We reported earlier that bone marrow-derived macrophages accumulate in the ARC to sustain hypothalamic inflammation upon chronic exposure to an HFD. However, the mechanism underlying hypothalamic macrophage accumulation has remained unclear. METHODS: We investigated whether circulating monocytes or myeloid precursors contribute to hypothalamic macrophage expansion during chronic HFD feeding. To trace circulating myeloid cells, we generated mice that express green fluorescent protein (GFP) in their lysozyme M-expressing myeloid cells (LysMGFP mice). We conducted parabiosis and bone marrow transplantation experiments using these animals. Mice received an HFD for 12 or 30 weeks and were then sacrificed to analyze LysMGFP cells in the hypothalamus. Hypothalamic vascular permeability in the HFD-fed obese mice was also tested by examining the extravascular leakage of Evans blue and fluorescence-labeled albumin. The timing of LysMGFP cell entry to the hypothalamus during development was also evaluated. RESULTS: Our parabiosis and bone marrow transplantation experiments revealed a significant infiltration of circulating LysMGFP cells into the liver, skeletal muscle, choroid plexus, and leptomeninges but not in the hypothalamic ARC during chronic HFD feeding, despite increased hypothalamic vascular permeability. These results suggested that the recruitment of circulating monocytes is not a major mechanism for maintaining and expanding the hypothalamic macrophage population in diet-induced obesity. We demonstrated instead that LysMGFP cells infiltrate the hypothalamus during its development. LysMGFP cells appeared in the hypothalamic area from the late embryonic period. This cellular pool suddenly increased immediately after birth, peaked at the postnatal second week, and adopted an adult pattern of distribution after weaning. CONCLUSIONS: Bone marrow-derived macrophages mostly populate the hypothalamus in early postnatal life and may maintain their pool without significant recruitment of circulating monocytes throughout life, even under conditions of chronic HFD feeding.


Assuntos
Hipotálamo/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Animais , Transplante de Medula Óssea , Permeabilidade Capilar , Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Parabiose
18.
Inflamm Res ; 68(5): 351-358, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30863887

RESUMO

OBJECTIVE AND DESIGN: Hypothalamic inflammation is closely associated with metabolic dysregulation. Fibroblast growth factor 21 (FGF21) is known to be an important metabolic regulator with anti-inflammatory properties. In this study, we investigated the effects of FGF21 deficiency on obesity-induced hypothalamic inflammation and thermogenic responses. MATERIALS AND METHODS: FGF21-deficient mice and/or wild-type (WT) mice were fed a high-fat diet (HFD) for 12 weeks. RESULTS: FGF21-deficient mice fed an HFD showed increased levels of inflammatory cytokines compared with WT obese control, and this was accompanied by upregulation of gliosis markers in the hypothalamus. Expression of heat-shock protein 72, a marker of neuronal damage, was increased in the FGF21-deficient obese mice, and the expression of hypothalamic neuronal markers involved in anti-thermogenic or thermogenic responses was altered. Moreover, the protein level of uncoupling protein 1 and other thermogenic genes were markedly reduced in the brown adipose tissue of the FGF21-deficient obese mice. CONCLUSIONS: These findings suggest that FGF21 deficiency aggravates obesity-induced hypothalamic inflammation and neuronal injury, leading to alterations in hypothalamic neural circuits accompanied by a reduction of the thermogenic response.


Assuntos
Encéfalo/patologia , Fatores de Crescimento de Fibroblastos/deficiência , Inflamação/etiologia , Obesidade/complicações , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Animais , Atrofia/etiologia , Atrofia/patologia , Encéfalo/metabolismo , Citocinas/genética , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/genética , Proteínas de Choque Térmico HSP72/genética , Inflamação/genética , Proteínas Klotho , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Obesidade/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
19.
Molecules ; 24(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671623

RESUMO

Biorenovation is a microbial enzyme-catalyzed structural modification of organic compounds with the potential benefits of reduced toxicity and improved biological properties relative to their precursor compounds. In this study, we synthesized a novel compound verified as formononetin 7-O-phosphate (FMP) from formononetin (FM) using microbial biotransformation. We further compared the anti-inflammatory properties of FMP to FM in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells. We observed that cell viabilities and inhibitory effects on LPS-induced nitric oxide (NO) production were greater in FMP-treated RAW 264.7 cells than in their FM-treated counterparts. In addition, FMP treatment suppressed the production of proinflammatory cytokines such as prostaglandin-E2 (PGE2), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in a dose-dependent manner and concomitantly decreased the mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). We also found that FMP exerted its anti-inflammatory effects through the downregulation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) signaling pathways. In conclusion, we generated a novel anti-inflammatory compound using biorenovation and demonstrated its efficacy in cell-based in vitro assays.


Assuntos
Anti-Inflamatórios/farmacologia , Isoflavonas/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Mediadores da Inflamação/metabolismo , Isoflavonas/química , Sistema de Sinalização das MAP Quinases , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Clin Endocrinol (Oxf) ; 88(4): 549-555, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29292526

RESUMO

CONTEXT: Serotonin acts as a neurotransmitter in the central and enteric nervous systems, modulating psychological, metabolic and gastrointestinal functions. Serotonin is also found in the serum or plasma, indicating its potential role as a hormone. OBJECTIVE: We aimed to assess the 24-hour diurnal profile of serum serotonin in relation to meal ingestion in healthy adult men. METHODS: Ten healthy (5 lean and 5 obese) male subjects were enrolled in this study. Blood samples were drawn every 30-60 minutes throughout a 24-hour period to determine the serotonin levels. Three meals were provided on a fixed schedule. To confirm the effect of meal intake on serum serotonin levels, 4 subjects underwent fasting until 1500 h and were then provided a meal without notice. RESULTS: Serum serotonin levels had distinct diurnal variations, with the highest levels early in the morning and the lowest levels in the midafternoon and during sleep. Notably, these diurnal oscillations were markedly reduced in obese subjects. Fluctuations in serum serotonin levels were associated with meal intake, and the levels peaked 30 minutes before meals and exhibited a trough during the postprandial period. Fasting blunted the meal-related oscillations in serum serotonin levels. Moreover, unexpected meal intake did not lead to a premeal increase in serum serotonin levels. CONCLUSIONS: Serum serotonin levels displayed meal-related diurnal oscillations, which were disrupted by fasting and obesity. These findings suggest the possibility that circulating serotonin modulates metabolic function in humans.


Assuntos
Ritmo Circadiano , Jejum/sangue , Refeições/fisiologia , Serotonina/sangue , Adulto , Voluntários Saudáveis , Humanos , Masculino , Obesidade/sangue , Período Pós-Prandial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA