Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nano Lett ; 23(7): 2502-2510, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36926974

RESUMO

Self-propelled micro/nanomotors are emergent intelligent sensors for analyzing extracellular biomarkers in circulating biological fluids. Conventional luminescent motors are often masked by a highly dynamic and scattered environment, creating challenges to characterize biomarkers or subtle binding dynamics. Here we introduce a strategy to amplify subtle signals by coupling strong light-matter interactions on micromotors. A smart whispering-gallery-mode microlaser that can self-propel and analyze extracellular biomarkers is demonstrated through a liquid crystal microdroplet. Lasing spectral responses induced by cavity energy transfer were employed to reflect the abundance of protein biomarkers, generating exclusive molecular labels for cellular profiling of exosomes derived from 3D multicellular cancer spheroids. Finally, a microfluidic biosystem with different tumor-derived exosomes was employed to elaborate its sensing capability in complex environments. The proposed autonomous microlaser exhibits a promising method for both fundamental biological science and applications in drug screening, phenotyping, and organ-on-chip applications.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Luminescência , Microfluídica
2.
Nano Lett ; 22(22): 8949-8956, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367840

RESUMO

Amyloidogenesis is a critical hallmark for many neurodegenerative diseases and drug screening; however, identifying intermediate states of protein aggregates at an earlier stage remains challenging. Herein, we developed a peptide-encapsulated droplet microlaser to monitor the amyloidogenesis process and evaluate the efficacy of anti-amyloid drugs. The lasing wavelength changes accordingly with the amyloid peptide folding behaviors and nanostructure conformations in the droplet resonator. A 3D deep-learning strategy was developed to directly image minute spectral shifts through a far-field camera. By extracting 1D color information and 2D features from the laser images, the progression of the amyloidogenesis process could be monitored using arrays of laser images from microdroplets. The training set, validation set, and test set of the multimodal learning model achieved outstanding classification accuracies of over 95%. This study shows the great potential of deep-learning-empowered peptide microlaser yields for protein misfolding studies and paves the way for new possibilities for high-throughput imaging of cavity biosensing.


Assuntos
Amiloidose , Aprendizado Profundo , Humanos , Imageamento Tridimensional/métodos , Amiloide/metabolismo , Amiloidose/metabolismo
3.
Nano Lett ; 22(3): 1425-1432, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817181

RESUMO

Optical vortices with tunable properties in multiple dimensions are highly desirable in modern photonics, particularly for broadly tunable wavelengths and topological charges at the micrometer scale. Compared to solid-state approaches, here we demonstrate tunable optical vortices through the fusion of optofluidics and vortex beams in which the handedness, topological charges, and lasing wavelengths could be fully adjusted and dynamically controlled. Nanogroove structures inscribed in Fabry-Pérot optofluidic microcavities were proposed to generate optical vortices by converting Hermite-Gaussian laser modes. Topological charges could be controlled by tuning the lengths of the nanogroove structures. Vortex laser beams spanning a wide spectral band (430-630 nm) were achieved by alternating different liquid gain materials. Finally, dynamic switching of vortex laser wavelengths in real-time was realized through an optofluidic vortex microlaser device. The findings provide a robust yet flexible approach for generating on-chip vortex sources with multiple dimensions, high tunability, and reconfigurability.

4.
Nanotechnology ; 32(35)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020429

RESUMO

The application of strain into GeSn alloys can effectively modulate the band structures, thus creating novel electronic and photonic devices. Raman spectroscopy is a powerful tool for characterizing strain; however, the lack of Raman coefficient makes it difficult for accurate determination of strain in GeSn alloys. Here, we have investigated the Raman-strain function of Ge1-xSnxalong 〈1 0 0〉 and 〈1 1 0〉 directions. GeSn nanomembranes (NMs) with different Sn compositions are transfer-printed on polyethylene terephthalate substrates. External strain is introduced by bending fixtures with different radii, leading to uniaxial tensile strain up to 0.44%. Strain analysis of flexible GeSn NMs bent along 〈1 0 0〉 and 〈1 1 0〉 directions are performed by Raman spectroscopy. The linear coefficients of Raman-strain for Ge0.96Sn0.04are measured to be -1.81 and -2.60 cm-1, while those of Ge0.94Sn0.06are decreased to be -2.69 and -3.82 cm-1along 〈1 0 0〉 and 〈1 1 0〉 directions, respectively. As a result, the experimental ratio of linear coefficient (ROLC) of Ge, Ge0.96Sn0.04and Ge0.94Sn0.06are 1.34, 1.44 and 1.42, which agree well with theoretical ROLC values calculated by elastic compliances and phonon deformation potentials (PDPs). In addition, the compositional dependence of PDPs is analyzed qualitatively. These fundamental parameters are important in designing high performance strained GeSn electronic and photonic devices.

5.
Nanotechnology ; 31(44): 445301, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32674093

RESUMO

GeSn alloys have emerged as promising materials for silicon-based optoelectronic devices. However, the epitaxy of pseudomorphic GeSn layers on a Ge buffer is susceptible to a significant compressive strain that significantly hinders the performance of GeSn-based photonic devices. Herein, we report on a new strategy to produce strain-free GeSn nanomembranes for advanced optoelectronic applications. The GeSn alloy was grown on a silicon-on-insulator substrate using Ge buffers, and it has a residual compressive strain. By transfer-printing the GeSn/Ge/Si multi-layers, followed by etching the Si template and the Ge buffer layers, respectively, the residual compressive strain was completely removed to achieve strain-free GeSn layers. A bandgap reduction was also observed as a result of strain relaxation. Furthermore, theoretical analysis was performed to evaluate the effect of strain relaxation on the GeSn-based optoelectronic devices. The proposed approach offers a practical and viable method for preparing strain-free GeSn alloys for advanced optoelectronic applications.

6.
Opt Express ; 24(15): 16894-903, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464141

RESUMO

In this study, the light absorption property of Ge nanomembrane (Ge NM), which incorporates hydrogen (H), in near-infrared (NIR) wavelength range was analyzed. Due to the presence of a large amount of structural defects, the light absorption coefficient of the Ge layer becomes much higher (10 times) than that of bulk Ge in the wavelength range of 1000 ~1600 nm. Increased light absorption was further measured from released Ge NM that has H incorporation in comparison to that of bulk Ge, proving the enhanced light absorption coefficient of H incorporated Ge. Finally, metal-semiconductor-metal (MSM) photodetectors were demonstrated using the H incorporated Ge on GeOI.

7.
ACS Appl Mater Interfaces ; 15(10): 13343-13352, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880165

RESUMO

Antireflective (AR) surface texturing is a feasible way to boost the light absorption of photosensitive materials and devices. As a plasma-free etching method, metal-assisted chemical etching (MacEtch) has been employed for fabricating GaN AR surface texturing. However, the poor etching efficiency of typical MacEtch hinders the demonstration of highly responsive photodetectors on an undoped GaN wafer. In addition, GaN MacEtch requires metal mask patterning by lithography, which leads to a huge processing complexity when the dimension of GaN AR nanostructure scales down to the submicron range. In this work, we have developed a facile texturing method of forming a GaN nanoridge surface on an undoped GaN thin film by a lithography-free submicron mask-patterning process via thermal dewetting of platinum. The nanoridge surface texturing effectively reduces the surface reflection in the ultraviolet (UV) regime, which can be translated to a 6-fold enhancement in responsivity (i.e., 115 A/W) of the photodiode at 365 nm. The results demonstrated in this work show that MacEtch can offer a viable route for enhanced UV light-matter interaction and surface engineering in GaN UV optoelectronic devices.

8.
Nanoscale ; 15(17): 7745-7754, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37000582

RESUMO

Mid-infrared (MIR) flexible photodetectors (FPDs) constitute an essential element for wearable applications, including health-care monitoring and biomedical detection. Compared with organic materials, inorganic semiconductors are promising candidates for FPDs owing to their superior performance as well as optoelectronic properties. Herein, for the first time, we present the use of transfer-printing techniques to enable a cost-effective, nontoxic GeSn MIR resonant-cavity-enhanced FPDs (RCE-FPDs) with strain-amplified optical responses. A narrow bandgap nontoxic GeSn nanomembrane was employed as the active layer, which was grown on a silicon-on-insulator substrate and then transfer-printed onto a polyethylene terephthalate (PET) substrate, eliminating the unwanted defects and residual compressive strain, to yield the MIR RCE-FPDs. In addition, a vertical cavity was created for the GeSn active layer to enhance the optical responsivity. Under bending conditions, significant tensile strain up to 0.274% was introduced into the GeSn active layer to effectively modulate the band structure, extend the photodetection in the MIR region, and substantially enhance the optical responsivity to 0.292 A W-1 at λ = 1770 nm, corresponding to an enhancement of 323% compared with the device under flat conditions. Moreover, theoretical simulations were performed to confirm the strain effect on the device performance. The results demonstrated high-performance, nontoxic MIR RCE-FPDs for applications in flexible photodetection.

9.
Adv Mater ; 34(10): e2107809, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34918404

RESUMO

Microscale laser emissions have emerged as a promising approach for information encoding and anti-counterfeiting for their feature-rich spectra and high sensitivity to the surrounding environment. Compared with artificial materials, natural responsive biomaterials enable a higher level of complexity and versatile ways for tailoring optical responses. However, precise control of lasing wavelengths and spatial locations with biomolecules remains a huge challenge. Here, a biologically programmable laser, in which the lasing can be manipulated by biomolecular activities at the nanoscale, is developed. Tunable lasing wavelengths are achieved by exploiting the swelling properties of enzyme-responsive hydrogel droplets in a Fabry-Pérot microcavity. Both experimental and theoretical means demonstrate that inner 3D network structures and external curvature of the hydrogel droplets lead to different lasing thresholds and resonance wavelengths. Finally, inkjet-printed multiwavelength laser encoding and anti-counterfeiting are showcased under different scalabilities and environments. Hyperspectral laser images are utilized as an advanced feature for a higher level of security. The biologically encoded laser will provide a new insight into the development of biosynthetic and bioprogrammable laser devices, offering new opportunities for secure communication and smart sensing.


Assuntos
Microgéis , Materiais Biocompatíveis , Hidrogéis , Lasers
10.
ACS Nano ; 16(1): 378-385, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978803

RESUMO

Nanotransfer printing techniques have attracted significant attention due to their outstanding simplicity, cost-effectiveness, and high throughput. However, conventional methods via a chemical medium hamper the efficient fabrication with large-area uniformity and rapid development of electronic and photonic devices. Herein, we report a direct chemisorption-assisted nanotransfer printing technique based on the nanoscale lower melting effect, which is an enabling technology for two- or three-dimensional nanostructures with feature sizes ranging from tens of nanometers up to a 6 in. wafer-scale. The method solves the major bottleneck (large-scale uniform metal catalysts with nanopatterns) encountered by metal-assisted chemical etching. It also achieves wafer-scale, uniform, and controllable nanostructures with extremely high aspect ratios. We further demonstrate excellent uniformity and high performance of the resultant devices by fabricating 100 photodetectors on a 6 in. Si wafer. Therefore, our method can create a viable route for next-generation, wafer-scale, uniformly ordered, and controllable nanofabrication, leading to significant advances in various applications, such as energy harvesting, quantum, electronic, and photonic devices.

11.
ACS Appl Mater Interfaces ; 13(51): 61396-61403, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34851080

RESUMO

We report an enhanced performance of flexible titanium nitride/germanium-tin (TiN/GeSn) photodetectors (PDs) with an extended photodetection range based on sub-bandgap absorption. Single-crystalline GeSn membranes transfer-printed on poly(ethylene terephthalate) are integrated with plasmonic TiN to form a TiN/GeSn heterojunction. Formation of the heterojunction creates a Schottky contact between the TiN and GeSn. A Schottky barrier height of 0.49 eV extends the photodetection wavelength to 2530 nm and further enhances the light absorption capability within the detection range. In addition, finite-difference time-domain simulation proves that the integration of TiN and GeSn could enhance average absorption from 0.13 to 0.33 in the near-infrared (NIR) region (e.g., 1400-2000 nm) and more than 70% of light is absorbed in TiN. The responsivity of the fabricated TiN/GeSn PDs is increased from 30 to 148.5 mA W-1 at 1550 nm. There is also an ∼180 nm extension in the optical absorption wavelength of the flexible TiN/GeSn PD. The enhanced performance of the device is attributed to the absorption and separation of plasmonic hot carriers via TiN and the TiN/GeSn junction, respectively. The effect of external uniaxial strain is also investigated. A tensile strain of 0.3% could further increase the responsivity from 148.5 to 218 mA W-1, while it is decreased to 102 mA W-1 by 0.25% compressive strain. In addition, the devices maintain stable performance after multiple and long bending cycles. Our results provide a robust and cost-effective method to extend the NIR photodetection capability of flexible group IV PDs.

12.
Adv Mater ; 33(32): e2100566, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34189777

RESUMO

There is broad interest in developing photonically active substrates from naturally abundant, minimally processed materials that can help to overcome the environmental challenges of synthetic plastic substrates while also gaining inspiration from biological design principles. To date, most efforts have focused on rationally engineering the micro- and nanoscale structural properties of cellulose-based materials by tuning fibril and fiber dimensions and packing along with chemical modifications, while there is largely untapped potential to design photonically active substrates from other classes of natural materials with distinct morphological features. Herein, the fabrication of a flexible pollen-derived substrate is reported, which exhibits high transparency (>92%) and high haze (>84%) on account of the micro- and nanostructure properties of constituent pollen particles that are readily obtained from nature and require minimal extraction or processing to form the paper-like substrate based on colloidal self-assembly. Experiments and simulations confirm that the optical properties of the pollen substrate are tunable and arise from light-matter interactions with the spiky surface of pollen particles. In a proof-of-concept example, the pollen substrate is incorporated into a functional perovskite solar cell while the tunable optical properties of the intrinsically micro-/nanostructured pollen substrate can be useful for a wide range of optoelectronic applications.


Assuntos
Eletrônica , Nanoestruturas/química , Pólen/química , Helianthus/metabolismo , Luz , Energia Solar
13.
ACS Nano ; 15(5): 8386-8396, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33908251

RESUMO

Interdigitated photodetectors (IPDs) based on the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface have gained prominence as high sensitivity ultraviolet (UV) PDs due to their excellent optoelectronic performance. However, most 2DEG-IPDs have been built on rigid substrates, thus limiting the use of 2DEG-IPDs in flexible and wearable applications. In this paper, we have demonstrated high performance flexible AlGaN/GaN 2DEG-IPDs using AlGaN/GaN 2DEG heterostructure membranes created from 8 in. AlGaN/GaN on insulator (AlGaN/GaNOI) substrates. The interdigitated AlGaN/GaN heterostructure has been engineered to reduce dark current by disconnecting the conductive channel at the heterostructure interface. Photocurrent has been also boosted by the escaped carriers from the 2DEG layer. Therefore, the utilization of a 2DEG layer in transferrable AlGaN/GaN heterostructure membranes offers great promises for high performance flexible 2DEG-IPDs for advanced UV detection systems that are critically important in myriad biomedical and environmental applications.

14.
Micromachines (Basel) ; 11(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839407

RESUMO

Metal-semiconductor-metal photodetectors (MSM PDs) are effective for monolithic integration with other optical components of the photonic circuits because of the planar fabrication technique. In this article, we present the design, growth, and characterization of GeSn MSM PDs that are suitable for photonic integrated circuits. The introduction of 4% Sn in the GeSn active region also reduces the direct bandgap and shows a redshift in the optical responsivity spectra, which can extend up to 1800 nm wavelength, which means it can cover the entire telecommunication bands. The spectral responsivity increases with an increase in bias voltage caused by the high electric field, which enhances the carrier generation rate and the carrier collection efficiency. Therefore, the GeSn MSM PDs can be a suitable device for a wide range of short-wave infrared (SWIR) applications.

15.
ACS Appl Mater Interfaces ; 11(30): 27371-27377, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31265223

RESUMO

Metal-assisted chemical etching (MacEtch) is an emerging anisotropic chemical etching technique that has been used to fabricate high aspect ratio semiconductor micro- and nanostructures. Despite its advantages in unparalleled anisotropy, simplicity, versatility, and damage-free nature, the adaptation of MacEtch for silicon (Si)-based electronic device fabrication process is hindered by the use of a gold (Au)-based metal catalyst, as Au is a detrimental deep-level impurity in Si. In this report, for the first time, we demonstrate CMOS-compatible titanium nitride (TiN)-based MacEtch of Si by establishing a true vapor-phase (VP) MacEtch approach in order to overcome TiN-MacEtch-specific challenges. Whereas inverse-MacEtch is observed using conventional liquid phase MacEtch because of the limited mass transport from the strong adhesion between TiN and Si, the true VP etch leads to forward MacEtch and produces Si nanowire arrays by engraving the TiN mesh pattern in Si. The etch rate as a function of etch temperature, solution concentration, TiN dimension, and thickness is systematically characterized to uncover the underlying nature of MacEtching using this new catalyst. VP MacEtch represents a significant step toward scalability of this disruptive technology because of the high controllability of gas phase reaction dynamics. TiN-MacEtch may also have direct implications in embedded TiN-based plasmonic semiconductor structures for photonic applications.

16.
ACS Nano ; 13(8): 8784-8792, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31244033

RESUMO

ß-Ga2O3, with a bandgap of ∼4.6-4.9 eV and readily available bulk substrates, has attracted tremendous interest in the wide bandgap semiconductor community. Producing high aspect ratio ß-Ga2O3 3D nanostructures without surface damage is crucial for next-generation power electronics. However, most wet etching methods can only achieve very limited aspect ratios, while dry etch usually damages the surface due to high energy ions. In this work, we demonstrate the formation of ß-Ga2O3 fin arrays on a (010) ß-Ga2O3 substrate by metal-assisted chemical etching (MacEtch) with high aspect ratio and sidewall surfaces with excellent quality. The etching was found to be strongly crystal orientation dependent, and three kinds of vertical structures were formed after MacEtch. The Schottky barrier height (SBH) between Pt and various MacEtch-produced ß-Ga2O3 surfaces and sidewalls was found to decrease as the aspect ratio of the ß-Ga2O3 vertical structure increased. This could be attributed to the different amount of oxygen lost at the surface after etching, as indicated by the XPS and TEM examination. Very little hysteresis was observed in the capacitance-voltage characteristics for the 3D Pt/Al2O3/ß-Ga2O3 MOS capacitor structures, and the extracted interface trap density was as small as 2.73 × 1011 cm-2 eV-1, comparable to or lower than that for unetched planar ß-Ga2O3 surfaces.

17.
ACS Appl Mater Interfaces ; 10(10): 9116-9122, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29406759

RESUMO

Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO2 which is readily removed by HF alone with no anisotropy. In addition, 320 µm square through-Si-via (TSV) arrays in 550 µm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.

18.
ACS Nano ; 12(7): 6748-6755, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29847725

RESUMO

Surface antireflection micro and nanostructures, normally formed by conventional reactive ion etching, offer advantages in photovoltaic and optoelectronic applications, including wider spectral wavelength ranges and acceptance angles. One challenge in incorporating these structures into devices is that optimal optical properties do not always translate into electrical performance due to surface damage, which significantly increases surface recombination. Here, we present a simple approach for fabricating antireflection structures, with self-passivated amorphous Ge (α-Ge) surfaces, on single crystalline Ge (c-Ge) surface using the inverse metal-assisted chemical etching technology (I-MacEtch). Vertical Schottky Ge photodiodes fabricated with surface structures involving arrays of pyramids or periodic nano-indentations show clear improvements not only in responsivity, due to enhanced optical absorption, but also in dark current. The dark current reduction is attributed to the Schottky barrier height increase and self-passivation effect of the i-MacEtch induced α-Ge layer formed on top of the c-Ge surface. The results demonstrated in this work show that MacEtch can be a viable technology for advanced light trapping and surface engineering in Ge and other semiconductor based optoelectronic devices.

19.
Nat Commun ; 8(1): 1782, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176549

RESUMO

Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.


Assuntos
Eletrônica/instrumentação , Olho Artificial , Silício/química , Desenho de Equipamento , Semicondutores
20.
Sci Adv ; 3(7): e1602783, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695202

RESUMO

Miniaturization of optoelectronic devices offers tremendous performance gain. As the volume of photoactive material decreases, optoelectronic performance improves, including the operation speed, the signal-to-noise ratio, and the internal quantum efficiency. Over the past decades, researchers have managed to reduce the volume of photoactive materials in solar cells and photodetectors by orders of magnitude. However, two issues arise when one continues to thin down the photoactive layers to the nanometer scale (for example, <50 nm). First, light-matter interaction becomes weak, resulting in incomplete photon absorption and low quantum efficiency. Second, it is difficult to obtain ultrathin materials with single-crystalline quality. We introduce a method to overcome these two challenges simultaneously. It uses conventional bulk semiconductor wafers, such as Si, Ge, and GaAs, to realize single-crystalline films on foreign substrates that are designed for enhanced light-matter interaction. We use a high-yield and high-throughput method to demonstrate nanometer-thin photodetectors with significantly enhanced light absorption based on nanocavity interference mechanism. These single-crystalline nanomembrane photodetectors also exhibit unique optoelectronic properties, such as the strong field effect and spectral selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA