Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917428

RESUMO

Melanoma accounts for the majority of skin cancer deaths. About 50% of all melanomas are associated with BRAF mutations. BRAF mutations are classified into three classes with regard to dependency on RAF dimerization and RAS signaling. The most frequently occurring class I BRAF V600 mutations are sensitive to vemurafenib whereas class II and class III mutants, non-V600 BRAF mutants are resistant to vemurafenib. Herein we report six pyrimido[4,5-d]pyrimidin-2-one derivatives possessing highly potent anti-proliferative activities on melanoma cells harboring BRAF class I/II/III mutants. Novel and most potent derivative, SIJ1777, possesses not only two-digit nanomolar potency but also 2 to 14-fold enhanced anti-proliferative activities compared with reference compound, GNF-7 against melanoma cells (SK-MEL-2, SK-MEL-28, A375, WM3670, WM3629). Moreover, SIJ1777 substantially inhibits the activation of MEK, ERK, and AKT and remarkably induces apoptosis and significantly blocks migration, invasion, and anchorage-independent growth of melanoma cells harboring BRAF class I/II/II mutations while both vemurafenib and PLX8394 have little to no effects on melanoma cells expressing BRAF class II/III mutations. Taken together, our six GNF-7 derivatives exhibit highly potent activities against melanoma cells harboring class I/II/III BRAF mutations compared with vemurafenib as well as PLX8394.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma , Mutação , Proteínas Proto-Oncogênicas B-raf , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
2.
Adv Sci (Weinh) ; 11(4): e2306401, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032124

RESUMO

Chemically modified proteins have diverse applications; however, conventional chemo-selective methods often yield heterogeneously labeled products. To address this limitation, site-specific protein labeling holds significant potential, driving extensive research in this area. Nevertheless, site-specific modification of native proteins remains challenging owing to the complexity of their functional groups. Therefore, a method for site-selective labeling of intact proteins is aimed to design. In this study, a novel approach to traceless affinity-directed intact protein labeling is established, which leverages small binding proteins and genetic code expansion technology. By applying this method, a site-specific antibody labeling with a drug, which leads to the production of highly effective antibody-drug conjugates specifically targeting breast cancer cell lines is achieved. This approach enables traceless conjugation of intact target proteins, which is a critical advantage in pharmaceutical applications. Furthermore, small helical binding proteins can be easily engineered for various target proteins, thereby expanding their potential applications in diverse fields. This innovative approach represents a significant advancement in site-specific modification of native proteins, including antibodies. It also bears immense potential for facilitating the development of therapeutic agents for various diseases.


Assuntos
Imunoconjugados , Proteínas/metabolismo , Anticorpos
4.
Eur J Med Chem ; 259: 115592, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478559

RESUMO

SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 µM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 µM) and bacteria (MICs = 4-32 µg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 µg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Sideróforos/farmacologia , Staphylococcus aureus
5.
Eur J Med Chem ; 259: 115635, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37494773

RESUMO

Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.


Assuntos
Necroptose , Proteínas Quinases , Humanos , Apoptose , Necroptose/efeitos dos fármacos , Necrose , Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
Cell Chem Biol ; 30(11): 1414-1420.e5, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37567174

RESUMO

Chemically induced protein degradation is a powerful strategy for perturbing cellular biochemistry. The predominant mechanism of action for protein degrader drugs involves an induced proximity between the cellular ubiquitin-conjugation machinery and a target. Unlike traditional small molecule enzyme inhibition, targeted protein degradation can clear an undesired protein from cells. We demonstrate here the use of peptide ligands for Kelch-like homology domain-containing protein 2 (KLHDC2), a substrate adapter protein and member of the cullin-2 (CUL2) ubiquitin ligase complex, for targeted protein degradation. Peptide-based bivalent compounds that can induce proximity between KLHDC2 and target proteins cause degradation of the targeted factors. The cellular activity of these compounds depends on KLHDC2 binding. This work demonstrates the utility of KLHDC2 for targeted protein degradation and exemplifies a strategy for the rational design of peptide-based ligands useful for this purpose.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Proteólise , Proteínas Adaptadoras de Transdução de Sinal
7.
J Med Chem ; 65(8): 6017-6038, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436119

RESUMO

Although FGFR inhibitors hold promise in treating various cancers, resistance to the FGFR inhibitors caused by acquired secondary mutations has emerged. To discover novel FGFR inhibitors capable of inhibiting FGFR mutations, including gatekeeper mutations, we designed and synthesized several new pyridinyltriazine derivatives. A structure-activity relationship (SAR) study led to the identification of 17a as a highly potent panFGFR inhibitor against wild-type and mutant FGFRs. Notably, 17a is superior to infigratinib in terms of kinase-inhibitory and cellular activities, especially against V555M-FGFR3. Molecular dynamics simulations provide a clear understanding of why pyridinyltraizine derivative 17a possesses activity against V555M-FGFR3. Moreover, 17a significantly suppresses proliferation of cancer cells harboring FGFR mutations via FGFR signaling blockade, cell cycle arrest, and apoptosis. Furthermore, 17a and 17b exhibited remarkable efficacies in TEL-V555M-FGFR3 Ba/F3 xenograft mouse model and 17a is more efficacious than infigratinib. This study provides new insight into the design of novel FGFR inhibitors that are active against FGFR mutants.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Resistência a Medicamentos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
8.
Cancers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36612139

RESUMO

c-KIT is a promising therapeutic target against gastrointestinal stromal tumor (GIST). In order to identify novel c-KIT inhibitors capable of overcoming imatinib resistance, we synthesized 31 novel thiazolo[5,4-b]pyridine derivatives and performed SAR studies. We observed that, among these substances, 6r is capable of inhibiting significantly c-KIT and suppressing substantially proliferation of GIST-T1 cancer cells. It is of note that 6r is potent against a c-KIT V560G/D816V double mutant resistant to imatinib. Compared with sunitinib, 6r possesses higher differential cytotoxicity on c-KIT D816V Ba/F3 cells relative to parental Ba/F3 cells. In addition, kinase panel profiling reveals that 6r has reasonable kinase selectivity. It was found that 6r remarkably attenuates proliferation of cancer cells via blockade of c-KIT downstream signaling, and induction of apoptosis and cell cycle arrest. Furthermore, 6r notably suppresses migration and invasion, as well as anchorage-independent growth of GIST-T1 cells. This study provides useful SAR information for the design of novel c-KIT inhibitors overcoming imatinib-resistance.

9.
J Med Chem ; 65(3): 1915-1932, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35029981

RESUMO

The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of 16e on Plk1-PBD is >30-fold higher than those of PMQSpTPL. Both 16a and 16e possess excellent selectivity for Plk1-PBD over Plk2/3-PBD. Analysis of the cocrystal structure of Plk1-PBD in complex with 16a reveals that the 3-(trifluoromethyl)benzoyl group in 16a interacts with Arg516 through a π-stacking interaction. This π-stacking interaction, which has not been reported previously, provides insight into the design of novel and potent Plk1-PBD inhibitors. Furthermore, 16h, a PEGlyated macrocyclic phosphopeptide derivative, induces Plk1 delocalization and mitotic failure in HeLa cells. Also, the number of phospho-H3-positive cells in a zebrafish embryo increases in proportion to the amount of 16a. Collectively, the novel macrocyclic peptidomimetics should serve as valuable templates for the design of potent and novel Plk1-PBD inhibitors.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/metabolismo , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Relação Estrutura-Atividade , Peixe-Zebra , Quinase 1 Polo-Like
10.
Front Oncol ; 11: 757598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790577

RESUMO

Inhibitors of tropomyosin-related kinases (TRKs) display remarkable outcomes in the regression of cancers harboring the Neurotrophin Receptors Tyrosine Kinase (NTRK) fusion gene. As a result, TRKs have become attractive targets in anti-cancer drug discovery programs. Here, we demonstrate that AZD4547, a highly potent and selective inhibitor of fibroblast growth factor receptor (FGFR), displays anti-tumor activity against KM12(Luc) harboring the TPM3-NTRK1 fusion gene associated with its direct inhibition of TRKs. The results of profiling, using a 64-member in-house cancer cell panel, show that AZD4547 displays anti-proliferation activity against KM12(Luc) with a GI50 of 100 nM. In vitro biochemical assays reveal that AZD4547 has IC50 values of 18.7, 22.6 and 2.9 nM against TRKA, B and C, respectively. In a cellular context, AZD4547 blocks auto-phosphorylation of TRKs and phosphorylation of its downstream molecules including PLC-gamma and AKT in a dose dependent manner. Also, AZD4547 at 0.1 µM concentration downregulates expression of MAPK target genes (DUSP6, CCND1 and ETV1) as well as the E2F pathway. Furthermore, AZD4547 induces G0/G1 arrest and apoptosis, and suppresses anchorage independent growth of KM12(Luc). Oral administration of 40 mpk AZD4547 dramatically delays tumor growth in a KM12(Luc) implemented xenograft model, without promoting body weight changes. The capability of AZD4547 to inhibit TRKA, TRKB and clinically relevant mutants (TRKA G595R, G667S, G667C and G667A) was also evaluated using Ba/F3 cells harboring the ETV6-NTRKs fusion gene. The combined observations demonstrate the potential application of AZD4547 for treatment of NTRK fusion driven cancers.

11.
Front Oncol ; 11: 768022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956887

RESUMO

RAS mutants are involved in approximately 30% of all human cancers and have been regarded as undruggable targets owing to relatively smooth protein surface and obscure binding pockets. In our previous study, we have demonstrated that GNF-7, a multi-targeted kinase inhibitor, possesses potent anti-proliferative activity against Ba/F3 cells transformed with NRAS-G12D. Based on our further analysis using Ba/F3 cells transformed with mtRAS, we discovered a series of pyrimido[4,5-d]pyrimidin-2-one analogues as mtRAS-signaling pathway blockers. In addition, our efforts expanded the assessment to cancer cells with mtRAS, which revealed that these substances are also capable of strongly suppressing the proliferation of various cancer cells harboring KRAS-G12D (AsPC-1), KRAS-G12V (SW480, DU-145), KRAS-G12C (H358), KRAS-G13D (MDA-MB-231), KRAS-Q61L (HT-29), and NRAS-Q61L (OCI-AML3). We herein report novel and potent mtRAS-signaling pathway blockers, SIJ1795 and SIJ1772, possessing 2 to 10-fold increased anti-proliferative activities compared to those of GNF-7 on cancer cells harboring mtRAS as well as on Ba/F3 cells transformed with mtRAS. Both SIJ1795 and SIJ1772 attenuate phosphorylation of RAS downstream molecules (AKT and MEK) and induce apoptosis and G0/G1 cell cycle arrest on cancer cells with mtRAS. Moreover, both substances substantially suppress the migration, invasion, and colony formation of cancer cells harboring mtRAS. Taken together, this study led us to identification of SIJ1795 and SIJ1772 capable of strongly inhibiting mtRAS-signaling pathway on cancer cells harboring mtRAS.

12.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30538170

RESUMO

The tetracycline repressor (TetR)-regulated system is a widely used tool to study gene functions through control of its expression. Various effectors such as tetracycline (Tc) and doxycycline (Dox) quickly induce or shut down gene expression, but reversing gene expression has not been eligible due to long half-lives of such effectors. Here, we found that procaspase activating compound 1 (PAC-1) rapidly reduces transient expression of TetR-regulated green fluorescent protein (GFP) in mammalian cells. Next, we applied PAC-1 to control of expression of transient receptor potential melastatin 7 (TRPM7) protein, whose downstream cellular events can be monitored by cell morphological changes. We observed that PAC-1 quickly reduces TRPM7 expression, consequently affecting cell morphology regulated by TRPM7. The present study demonstrates the first small molecule that efficiently turns off the TetR-regulated gene expression in mammalian cells, thereby precisely regulating the expression level of target gene.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hidrazonas/farmacologia , Piperazinas/farmacologia , Proteínas Repressoras/genética , Tetraciclina/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Canais de Cátion TRPM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA