RESUMO
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
RESUMO
The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.
Assuntos
Perfilação da Expressão Gênica , Fígado/metabolismo , Poli A/análise , Análise de Sequência de RNA/métodos , Humanos , Poliadenilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMO
The proto-oncogene MYC is frequently dysregulated in patients with diffuse large B-cell lymphoma (DLBCL) and plays a critical role in disease progression. To improve the clinical outcomes of patients with DLBCL, the development of strategies to target MYC is crucial. The use of medicinal plants for developing anticancer drugs has garnered considerable attention owing to their diverse mechanisms of action. In this study, 100 plant extracts of flora from the Republic of Korea were screened to search for novel agents with anti-DLBCL effects. Among them, Ajania pacifica (Nakai) K. Bremer and Humphries extract (APKH) efficiently suppressed the survival of DLBCL cells, while showing minimal toxicity toward normal murine bone marrow cells. APKH suppressed the expression of anti-apoptotic BCL2 family members, causing an imbalance between the pro-apoptotic and anti-apoptotic BCL2 members. This disrupted mitochondrial membrane potential, cytochrome c release, and pro-caspase-3 activation and eventually led to DLBCL cell death. Importantly, MYC expression was markedly downregulated by APKH and ectopic expression of MYC in DLBCL cells abolished the pro-apoptotic effects of APKH. These results demonstrate that APKH exerts anti-DLBCL effects by inhibiting MYC expression. Moreover, when combined with doxorubicin, an essential component of the CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone), APKH synergistically enhanced the therapeutic effect of doxorubicin. This indicates that APKH may overcome drug resistance, which is common in patients with refractory/relapsed DLBCL. To identify compounds with anti-DLBCL activities in APKH, the chemical profile analysis of APKH was performed using UPLC-QTOF/MSe analysis and assessed for its anticancer activity. Based on the UPLC-QTOF/MSe chemical profiling, it is conceivable that APKH may serve as a novel agent targeting MYC and sensitizing drug-resistant DLBCL cells to CHOP chemotherapy. Further studies to elucidate how the compounds in APKH exert tumor-suppressive role in DLBCL are warranted.
RESUMO
Highly efficient water splitting electrocatalyst for producing hydrogen as a renewable energy source offers potential to achieve net-zero. However, it has significant challenges in using transition metal electrocatalysts as alternatives to noble metals due to their low efficiency and durability, furthermore, the reliance on electricity generation for electrocatalysts from fossil fuels leads to unavoidable carbon emissions. Here, a highly efficient self-powered water splitting system integrated is designed with triboelectric nanogenerator (TENG) and Ni3FeN@Fe24N10 catalyst with improved catalytic activity and durability. First, the durability of the Ni3FeN catalyst is improved by forming N, P carbon shell using melamine, polyetherimide, and phytic acid. The catalyst activity is improved by generating Fe24N10 in the carbon shell through the Kirkendall effect. The synthesized Ni3FeN@Fe24N10 catalyst exhibited excellent bifunctional catalytic activity (ηOER = 261.8 mV and ηHER = 151.8 mV) and remarkable stability (91.7% in OER and 90.5% in HER) in 1 m KOH. Furthermore, to achieve ecofriendly electricity generation, a rotation-mode TENG that sustainably generate high-performance is realized using butylated melamine formaldehyde. As a result, H2 is successfully generated using the integrated system composed of the designed TENG and catalyst. The finding provides a promising approach for energy generation to achieve net-zero.
RESUMO
Teriparatide and denosumab, anti-osteoporosis medications with different mechanisms, have been widely used in the patients with osteoporotic vertebral fracture (OVF) considered as advanced osteoporosis. Teriparatide has been shown to enhance bone formation and fracture healing in OVF, but there are still no sufficient evidences discussing about the role of denosumab in newly developed OVF. In this study, we found the similar radiological deformation and functional outcomes of conservative treatment with teriparatide and denosumab in thoracolumbar (TL) OVF, and teriparatide showed a more frequent incidence of fracture union with paravertebral bone bridge formation compared to denosumab. INTRODUCTION: Teriparatide and denosumab have been widely used to treat advanced osteoporosis and prevent subsequent fractures in patients with OVCF. Unlike teriparatide, which is considered to be effective in fracture healing, there is still no clear role and evidence for the effect of denosumab in acute OVCF. This study compared the radiological and functional outcomes of conservative treatment with teriparatide and denosumab in TL-OVF. METHODS: This retrospective study enrolled 78 women with mean age of 74.69 ± 7.66 (60-92) years diagnosed as a TL-OVF with no neurological deficits. All patients were treated conservatively with teriparatide (34 of group T, once-daily 20 µg) or denosumab (44 of group D, once-6 months 60 mg) for 6 months. We evaluated the radiological deformation (kyphotic angle, segmental vertebral kyphotic angle, and compression ratio) and the incidence of fracture union with paravertebral bone bridge formation (FUPB) and functional outcomes using the visual analog scale (VAS) and Oswestry Disability Index (ODI) at 0, 3, and 6 months. RESULTS: In the radiological deformation and functional outcomes, there were no significant differences at 0, 3, and 6 months between the two groups (P > 0.05). However, the incidence of FUPB at 6 months was higher in group T (20/34, 58.8%) compared to group D (11/44, 25.0%) (P = 0.004), and teriparatide was the most statistically significant factor for achieving FUPB (OR 4.486, P = 0.012) in multivariable logistic analysis. CONCLUSIONS: Teriparatide and denosumab, despite of their different pharmacological mechanisms, showed similar radiological deformation and functional outcomes in the conservative treatment of TL-OVF. However, teriparatide showed a significantly higher incidence of fracture union with paravertebral bone bridge formation.
Assuntos
Conservadores da Densidade Óssea , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Teriparatida/uso terapêutico , Denosumab/uso terapêutico , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/tratamento farmacológico , Conservadores da Densidade Óssea/uso terapêutico , Estudos Retrospectivos , Tratamento Conservador/efeitos adversos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/tratamento farmacológico , Osteoporose/tratamento farmacológicoRESUMO
Hydrogen fuel, which is essential for the hydrogen economy, including hydrogen cell vehicles, must be of high quality for optimal hydrogen cell use. Currently, hydrogen fuel quality control is mainly done by offline analysis with periodic sampling. However, with the anticipated surge in hydrogen charging stations, there's a pressing need for cost-effective, high-throughput online analysis systems. Additionally, the miniaturization of these analytical instruments for field application is also a challenge. In this study, we present a compact, real-time hydrogen fuel analyzer based on gas chromatography with a pulsed discharge helium ionization detector. Its dual-column system efficiently analyzes major impurities in hydrogen fuel in less than 30 min. Indicator species (CO, CO2, CH4, O2, N2, and additional hydrogen sulfide [H2S]) are determined by examining hydrogen production and supply processes. The analyzer's measurement capability is consistent with µmol/mol-level analysis, providing valuable real-time information for hydrogen infrastructure managers. Additionally, it can analyze H2S, a crucial marker of sulfur compounds acting as catalytic poisons in fuel cells. This real-time analyzer offers efficient, informed decision-making support for hydrogen infrastructure managers, enhancing the overall reliability of hydrogen fuel in fuel-cell electric vehicles.
RESUMO
BACKGROUND: The South Korean government has been actively involved in plans to combat dementia, implementing a series of national strategies and plans since 2008. In July 2014, eligibility for mandatory long-term care insurance (LTCI) was extended to people with dementia enabling access to appropriate long-term care including the cognitive function training program and home nursing service. This study aimed to investigate changes in treatment patterns for Alzheimer's disease (AD) between July 2011 and June 2017 which spanned the 2014 revision. METHODS: This multicenter, retrospective, observational study of patients with newly diagnosed AD analyzed electronic medical records from 17 general hospitals across South Korea. Based on their time of AD diagnosis, subjects were categorized into Cohort 1 (1 July 2011 to 30 June 2014) and Cohort 2 (1 July 2014 to 30 June 2017). RESULTS: Subjects (N=3,997) divided into Cohorts 1 (n=1,998) and 2 (n=1,999), were mostly female (66.4%) with a mean age of 84.4 years. Cohort 1 subjects were significantly older (P<0.0001) and had a lower number of comorbidities (P=0.002) compared with Cohort 2. Mean Mini-Mental State Examination (MMSE) scores in Cohorts 1 and 2 at the time of AD diagnosis or start of initial treatment were 16.9 and 17.1, respectively (P=0.2790). At 1 year, mean MMSE scores in Cohorts 1 and 2 increased to 17.9 and 17.4, respectively (P=0.1524). Donepezil was the most frequently administered medication overall (75.0%), with comparable rates between cohorts. Rates of medication persistence were ≥98% for acetylcholinesterase inhibitor or memantine therapy. Discontinuation and switch treatment rates were significantly lower (49.7% vs. 58.0%; P<0.0001), and mean duration of initial treatment significantly longer, in Cohort 2 vs. 1 (349.3 vs. 300.2 days; P<0.0001). CONCLUSIONS: Comparison of cohorts before and after revision of the national LTCI system for dementia patients found no significant difference in mean MMSE scores at the time of AD diagnosis or start of initial treatment. The reduction in the proportion of patients who discontinued or changed their initial treatment, and the significant increase in mean duration of treatment, were observed following revision of the LTCI policy which enabled increased patient access to long-term care.
Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Estudos Retrospectivos , Acetilcolinesterase/uso terapêutico , Donepezila/uso terapêutico , Inibidores da Colinesterase/uso terapêuticoRESUMO
INTRODUCTION: Mast cells are the principal cells involved in acute and chronic colitis due to radiation, known as radiation-induced colitis (RIC). In this study, we investigated whether pretreatment with tranilast, a mast cell inhibitor, could alleviate chronic RIC. METHODS: A total of 23 Sprague-Dawley rats were randomly divided into three groups: control group (n = 5), radiation group (RG, n = 9), and tranilast-pretreated radiation group (TG, n = 9). The rats in the RG and the TG were irradiated in the pelvic area (1.5 cm from the anus) with a single dose of 20 Gy under general anesthesia. Tranilast (100 mg/kg) was administered intraperitoneally to the rats of the TG for 10 days, starting from the day of pelvic radiation. Ten weeks after radiation, the rats were euthanized. Rectal tissue samples were histologically evaluated for the total inflammation score (TIS) and mast cell count. The expression of MUC2, MUC5AC, and matrix metalloproteinase-9 (MMP-9) was also assessed immunohistochemically. RESULTS: Both the TIS and specific components of TIS such as epithelial atypia, vascular sclerosis, and colitis cystica profunda (CCP) were significantly higher in the RG than in the TG (p = 0.02, 0.038, 0.025, and 0.01, respectively). Thein number of infiltrating mast cells was significantly higher in the RG than in the TG (median [range]: 20 [3-54] versus 6 [3-25], respectively; p = 0.034). Quantitatively, the number of MMP-9-positive cells was significantly higher in the RG (23.67 ± 19.00) than in the TG (10.25 ± 8.45) (mean ± standard deviation; p < 0.05). TIS and MMP-9 exhibited a strong association (correlation coefficient r = 0.56, p < 0.05). Immunohistochemically, the mucin-lake of CCP showed no staining for MUC5AC but was stained positive for MUC2. CONCLUSION: Tranilast pretreatment of chronic RIC showed an anti-inflammatory effect associated with the reduction of mast cell infiltration and MMP-9 expression.
RESUMO
Efficient water disinfection is vitally needed in rural and disaster-stricken areas lacking power supplies. However, conventional water disinfection methods strongly rely on external chemical input and reliable electricity. Herein, we present a self-powered water disinfection system using synergistic hydrogen peroxide (H2O2) assisted electroporation mechanisms driven by triboelectric nanogenerators (TENGs) that harvest electricity from the flow of water. The flow-driven TENG, assisted by power management systems, generates a controlled output with aimed voltages to drive a conductive metal-organic framework nanowire array for effective H2O2 generation and electroporation. The injured bacteria caused by electroporation can be further damaged by facile diffused H2O2 molecules at high throughput. A self-powered disinfection prototype enables complete disinfection (>99.9999% removal) over a wide range of flows up to 3.0 × 104 L/(m2 h) with low water flow thresholds (200 mL/min; â¼20 rpm). This rapid, self-powered water disinfection method is promising for pathogen control.
RESUMO
The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.
Assuntos
Apoptose , Osteoblastos , Osteoclastos , Ligante RANK , Rodófitas , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Etanol/química , Peróxido de Hidrogênio/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Rodófitas/químicaRESUMO
Understanding the interplay between the surface structure and the passivation materials and their effects associated with surface structure modification is of fundamental importance; however, it remains an unsolved problem in the perovskite passivation field. Here, we report a surface passivation principle for efficient perovskite solar cells via a facet-dependent passivation phenomenon. The passivation process selectively occurs on facets, which is observed with various post-treatment materials with different functionality, and the atomic arrangements of the facets determine the alignments of the passivation layers. The profound understanding of facet-dependent passivation leads to the finding of 2-amidinopyridine hydroiodide as the material for a uniform and effective passivation on both (100) and (111) facets. Consequently, we achieved perovskite solar cells with an efficiency of 25.10% and enhanced stability. The concept of facet-dependent passivation can provide an important clue on unidentified passivation principles for perovskite materials and a novel means to enhance the performance and stability of perovskite-based devices.
RESUMO
Patients with pediatric B-cell acute lymphoblastic leukemia (B-ALL) have a high survival rate, yet the prognosis of adults and patients with relapsed/refractory disease is relatively poor. Therefore, it is imperative to develop new therapeutic strategies. Here, we screened 100 plant extracts from South Korean Flora and investigated their anti-leukemic effect using CCRF-SB cells as a B-ALL model. The top cytotoxic extract identified in this screening was the Idesia polycarpa Maxim. branch (IMB), which efficiently inhibited the survival and proliferation of CCRF-SB cells, while having minimal to no impact on normal murine bone marrow cells. Mechanistically, the IMB-induced proapoptotic effect involves the increase of caspase 3/7 activity, which was shown to be associated with the disruption of the mitochondrial membrane potential (MMP) through the reduction in antiapoptotic Bcl-2 family expression. IMB also promoted the differentiation of CCRF-SB cells via the upregulation of the expression of differentiation-related genes, PAX5 and IKZF1. Given that resistance to glucocorticoid (GC) is often found in patients with relapsed/refractory ALL, we investigated whether IMB could restore GC sensitivity. IMB synergized GC to enhance apoptotic rate by increasing GC receptor expression and downmodulating mTOR and MAPK signals in CCRF-SB B-ALL cells. These results suggest that IMB has the potential to be a novel candidate for the treatment of B-ALL.
RESUMO
BACKGROUND: Scapular notching is a well-known postoperative complication of reverse total shoulder arthroplasty (RTSA). However, subacromial notching (SaN), a subacromial erosion caused by repeated abduction impingement after RTSA, has not been previously reported in a clinical setting. Therefore, this study aimed to assess the risk factors and functional outcomes of SaN after RTSA. METHODS: We retrospectively reviewed the medical records of 125 patients who underwent RTSA with the same design between March 2014 and May 2017 and had at least 2 years of follow-up. SaN was defined as subacromial erosion observed at the final follow-up but not on the X-ray 3 months after surgery. Radiologic parameters representing the patient's native anatomy and degrees of lateralization and/or distalization during surgery were evaluated using preoperative and 3 months postoperative X-rays. The visual analogue scale of pain, active range of motion, and American Shoulder and Elbow Surgeons score were assessed preoperatively and at the final follow-up to evaluate the functional outcomes of SaN. RESULTS: SaN occurred in 12.8% (16/125) of enrolled patients during the study period. Preoperative center of rotation-acromion distance (P = .009) and postoperative humerus lateralization offset, which evaluated the degree of lateralization after RTSA (P = .003), were risk factors for SaN. The preoperative center of rotation-acromion distance and postoperative humerus lateralization cutoff values were 14.0 mm and 19.0 mm, respectively. The visual analogue scale of pain (P = .01) and American Shoulder and Elbow Surgeons score (P = .04) at the final follow-up were significantly worse in patients with SaN. CONCLUSIONS: SaN might adversely affect postoperative clinical outcomes. As SaN correlated with patients' anatomical characteristics and degree of lateralization during RTSA, the implant's degree of lateralization should be adjusted according to the patient's own anatomical characteristics.
Assuntos
Artroplastia do Ombro , Articulação do Ombro , Prótese de Ombro , Humanos , Artroplastia do Ombro/efeitos adversos , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Dor/etiologia , Amplitude de Movimento ArticularRESUMO
Cable is crucial to the control and instrumentation of machines and facilities. Therefore, early diagnosis of cable faults is the most effective approach to prevent system downtime and maximize productivity. We focused on a "soft fault state", which is a transient state that eventually becomes a permanent fault -open-circuit and short-circuit. However, the issue of soft fault diagnosis has not been considered enough in previous research, which could not provide crucial information, such as fault severity, to support maintenance. In this study, we focused on solving soft fault problem by estimating fault severity to diagnose early-stage faults. The proposed diagnosis method comprised a novelty detection and severity estimation network. The novelty detection part is specially designed to deal with varying operating conditions of industrial applications. First, an autoencoder calculates anomaly scores to detect faults using three-phase currents. If a fault is detected, a fault severity estimation network, wherein long short-term memory and attention mechanisms are integrated, estimates the fault severity based on the time-dependent information of the input. Accordingly, no additional equipment, such as voltage sensors and signal generators, is required. The conducted experiments demonstrated that the proposed method successfully distinguishes seven different soft fault degrees.
Assuntos
Robótica , Diagnóstico Precoce , Memória de Longo Prazo , Redes Neurais de Computação , Resolução de ProblemasRESUMO
Peanut (Arachis hypogaea L.) is a globally cultivated crop of significant economic and nutritional importance. The role of gibberellic-acid-stimulated Arabidopsis (GASA) family genes is well established in plant growth, development, and biotic and abiotic stress responses. However, there is a gap in understanding the function of GASA proteins in cultivated peanuts, particularly in response to abiotic stresses such as drought and salinity. Thus, we conducted comprehensive in silico analyses to identify and verify the existence of 40 GASA genes (termed AhGASA) in cultivated peanuts. Subsequently, we conducted biological experiments and performed expression analyses of selected AhGASA genes to elucidate their potential regulatory roles in response to drought and salinity. Phylogenetic analysis revealed that AhGASA genes could be categorized into four distinct subfamilies. Under normal growth conditions, selected AhGASA genes exhibited varying expressions in young peanut seedling leaves, stems, and roots tissues. Notably, our findings indicate that certain AhGASA genes were downregulated under drought stress but upregulated under salt stress. These results suggest that specific AhGASA genes are involved in the regulation of salt or drought stress. Further functional characterization of the upregulated genes under both drought and salt stress will be essential to confirm their regulatory roles in this context. Overall, our findings provide compelling evidence of the involvement of AhGASA genes in the mechanisms of stress tolerance in cultivated peanuts. This study enhances our understanding of the functions of AhGASA genes in response to abiotic stress and lays the groundwork for future investigations into the molecular characterization of AhGASA genes.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arachis/metabolismo , Filogenia , Proteínas de Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismoRESUMO
Vascular calcification (VC) and osteoporosis are age-related diseases and significant risk factors for the mortality of elderly. VC and osteoporosis may share common risk factors such as renin-angiotensin system (RAS)-related hypertension. In fact, inhibitors of RAS pathway, such as angiotensin type 1 receptor blockers (ARBs), improved both vascular calcification and hip fracture in elderly. However, a sex-dependent discrepancy in the responsiveness to ARB treatment in hip fracture was observed, possibly due to the estrogen deficiency in older women, suggesting that blocking the angiotensin signaling pathway may not be effective to suppress bone resorption, especially if an individual has underlying osteoclast activating conditions such as estrogen deficiency. Therefore, it has its own significance to find alternative modality for inhibiting both vascular calcification and osteoporosis by directly targeting osteoclast activation to circumvent the shortcoming of ARBs in preventing bone resorption in estrogen deficient individuals. In the present study, a natural compound library was screened to find chemical agents that are effective in preventing both calcium deposition in vascular smooth muscle cells (vSMCs) and activation of osteoclast using experimental methods such as Alizarin red staining and Tartrate-resistant acid phosphatase staining. According to our data, citreoviridin (CIT) has both an anti-VC effect and anti-osteoclastic effect in vSMCs and in Raw 264.7 cells, respectively, suggesting its potential as an effective therapeutic agent for both VC and osteoporosis.
Assuntos
Aurovertinas , Reabsorção Óssea , Osteoporose , Calcificação Vascular , Humanos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Reabsorção Óssea/metabolismo , Cálcio/metabolismo , Estrogênios/farmacologia , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteoporose/metabolismo , Calcificação Vascular/metabolismo , Animais , Camundongos , Células RAW 264.7 , Aurovertinas/farmacologiaRESUMO
A pseudoaneurysm of the subclavian artery following central venous catheter placement is a rare but potentially fatal complication that often requires surgical intervention. However, surgical repair of the subclavian artery remains challenging. Herein, we report the case of a male patient undergoing hemodialysis who developed a pseudoaneurysm of the subclavian artery after a bedside central vein catheter placement. Hemostasis was successfully achieved by selecting the pseudoaneurysm using a microcatheter. At the 10-month follow-up, the pseudoaneurysm was completely excluded, and the patient was in a stable condition. The patient underwent native arteriovenous fistula creation and hemodialysis. Endovascular treatment could be an effective nonsurgical treatment for subclavian artery pseudoaneurysms and has been attempted as a first-line treatment option.
Assuntos
Falso Aneurisma , Cateterismo Venoso Central , Humanos , Masculino , Artéria Subclávia , Falso Aneurisma/etiologia , Falso Aneurisma/terapia , Diálise Renal/efeitos adversos , Cateterismo Venoso Central/efeitos adversos , Catéteres/efeitos adversosRESUMO
Electrospun polymeric piezoelectric fibers have a considerable potential for shape-adaptive mechanical energy harvesting and self-powered sensing in biomedical, wearable, and industrial applications. However, their unsatisfactory piezoelectric performance remains an issue to be overcome. While strategies for increasing the crystallinity of electroactive ß phases have thus far been the major focus in realizing enhanced piezoelectric performance, tailoring the fiber morphology can also be a promising alternative. Herein, a design strategy that combines the nonsolvent-induced phase separation of a polymer/solvent/water ternary system and electrospinning for fabricating piezoelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE) fibers with surface porosity under ambient humidity is presented. Notably, electrospun P(VDF-TrFE) fibers with higher surface porosity outperform their smooth-surfaced counterparts with a higher ß phase content in terms of output voltage and power generation. Theoretical and numerical studies also underpin the contribution of the structural porosity to the harvesting performance, which is attributable to local stress concentration and reduced dielectric constant due to the air in the pores. This porous fiber design can broaden the application prospects of shape-adaptive energy harvesting and self-powered sensing based on piezoelectric polymer fibers with enhanced voltage and power performance, as successfully demonstrated in this work by developing a communication system based on self-powered motion sensing.
Assuntos
Polímeros , UmidadeRESUMO
BACKGROUND AND AIM: Colonoscopy and fecal immunochemical test (FIT) are commonly used screening methods for the detection of colorectal cancer (CRC), but their effects on survival have not been compared. We compared survival outcomes in patients with CRC according to the exposure history to colonoscopy or FIT before diagnosis of CRC. METHODS: We performed a nationwide population-based retrospective cohort study using Korean national-insurance claims data. In total, 24 875 patients with CRC diagnosed in 2012 were included. The patients were divided into three groups in terms of examinations performed during the 10 years prior to CRC diagnosis: the colonoscopy group, the FIT group, and the never-screened group. Survival outcomes were compared among the three groups. The colonoscopy group and FIT group were matched using propensity score-matching method. RESULTS: The cohort consisted of 9619 patients in the colonoscopy group, 6936 patients in the FIT group, and 8320 patients in the never-screened group. The 5-year overall survival rates were 74.1% in the colonoscopy group, 65.9% in the FIT group, and 59.6% in the never-screened group (P < 0.001). The adjusted hazard ratios for death were 0.56 (95% confidence interval [CI], 0.53-0.59) in the colonoscopy group and 0.78 (95% CI, 0.74-0.82) in the FIT group compared with the never-screened group. In the matched cohort, the adjusted hazard ratios for death was 0.76 (95% CI, 0.72-0.81) in the colonoscopy group compared with the FIT group. CONCLUSION: Colonoscopy is a more effective method for reducing mortality in patients with CRC compared with FIT.
Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Colonoscopia , Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Fezes , Humanos , Programas de Rastreamento/métodos , Sangue Oculto , Estudos RetrospectivosRESUMO
PURPOSE: Adjacent segment disease (ASD) requiring revision surgery is the most serious complication that can occur in patients undergoing posterior lumbar interbody fusion (PLIF) surgery. This study aimed to determine the risk factors for surgical ASD requiring revision surgery after PLIF with screw fixation surgery. We especially focused on paraspinal muscle, facet joint, and disc degeneration. METHODS: Among the patients who underwent PLIF with screw fixation due to degenerative spinal disease from January 2010 to December 2019, patients who underwent revision surgery for the development of ASD were enrolled. To evaluate the risk factors for surgical ASD, we selected a control group. Each patient in the control group was matched by age, sex, fusion level, number of fused segments, secondary MRI follow-up interval, and follow-up duration with a patient in the surgical ASD group. The radiographic and demographic data were compared between the surgical ASD and control groups. RESULTS: There were statistically significant differences between the two groups in radiological parameters of preoperative facet degeneration, facet effusion, facet angle, and fatty degeneration of the multifidus muscle. Multivariable logistic regression analysis revealed that preoperative facet effusion (odds ratio [OR] 6.48), preoperative facet angle (OR 1.24), and progression of fatty degeneration in the multifidus muscle (OR 1.07) were significant risk factors for surgical ASD. CONCLUSIONS: Preexisting high-grade adjacent facet effusion, sagittally oriented facet joint angle, and progressive fatty degeneration of the multifidus muscle are associated with the development of surgical ASD after PLIF surgery.