Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8017): 648-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811735

RESUMO

Colloidal crystals exhibit interesting properties1-4 that are in many ways analogous to their atomic counterparts. They have the same crystal structures2,5-7, undergo the same phase transitions8-10, and possess the same crystallographic defects11-14. In contrast to these structural properties, the mechanical properties of colloidal crystals are quite different from those of atomic systems. For example, unlike in atomic systems, the elasticity of hard-sphere colloidal crystals is purely entropic15; as a result, they are so soft that they can be melted just by stirring16,17. Moreover, crystalline materials deform plastically when subjected to increasing shear and become stronger because of the ubiquitous process of work hardening18; but this has so far never been observed in colloidal crystals, to our knowledge. Here we show that hard-sphere colloidal crystals exhibit work hardening. Moreover, despite their softness, the shear strength of colloidal crystals can increase and approach the theoretical limit for crystals, a value reached in very few other materials so far. We use confocal microscopy to show that the strength of colloidal crystals increases with dislocation density, and ultimately reaches the classic Taylor scaling behaviour for atomic materials19-21, although hard-sphere interactions lack the complexity of atomic interactions. We demonstrate that Taylor hardening arises through the formation of dislocation junctions22. The Taylor hardening regime, however, is established only after a transient phase, and it ceases when the colloidal crystals become so hard that the strain is localized within a thin boundary layer in which slip results from an unconventional motion of dislocations. The striking resemblance between colloidal and atomic crystals, despite the many orders of magnitude difference in particle size and shear modulus, demonstrates the universality of work hardening.


Assuntos
Coloides , Cristalização , Coloides/química , Microscopia Confocal , Resistência ao Cisalhamento , Dureza , Elasticidade
2.
Biochem Biophys Res Commun ; 726: 150280, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909534

RESUMO

Esophageal epithelium is one of the most proliferative and regenerative epithelia in our body, indicating robust stem cell activity. However, the underlying mechanisms regulating the self-renewal and differentiation of esophageal stem cells need to be more elucidated. Here, we identify the role of YAP1 in esophageal stem cells. YAP1 is differentially expressed in the nuclei of esophageal basal cells. Furthermore, the treatment of verteporfin, a YAP1 inhibitor, interfered with esophageal organoid formation. Consistently, YAP1 deletion decreased esophageal organoid formation and the expression of basal genes while increasing the expression of suprabasal genes. Finally, global transcriptomic analysis revealed that YAP1 inhibition induced a significant enrichment of gene sets related to keratinization and cornification, while depleting gene sets related to DNA repair and chromosome maintenance. Our data uncover a novel regulatory mechanism for esophageal stem cells, which could provide a potential strategy for esophageal regenerative medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Autorrenovação Celular , Esôfago , Células-Tronco , Proteínas de Sinalização YAP , Proteínas de Sinalização YAP/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Esôfago/citologia , Esôfago/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Humanos , Organoides/metabolismo , Organoides/citologia
3.
Biochem Biophys Res Commun ; 629: 34-39, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36099782

RESUMO

Tongue epithelium is one of the most proliferative and regenerative epithelia in our body. However, tongue stem cell research is hampered partly by the lack of optimal animal models to study tongue injury, repair, and regeneration. Here, we establish a novel chemically induced tongue injury-recovery mouse model. Focal application of sodium hydroxide for a limited time led to the denudation of suprabasal layers, leaving the basal layer. Time course study revealed that tongue epithelial cells robustly proliferate over one week after the tongue injury. Importantly, we demonstrated that our novel mouse model could be employed in the lineage tracing of the tongue stem cells under the injury and repair process and further showed that tongue stem cells proliferate faster and generate larger clones in the injury condition than in the steady state condition. Our data indicate the development of a novel chemically induced tongue injury-recovery mouse model for tongue stem cell research, which will significantly facilitate the preclinical study for the pathogenesis and treatment of caustic ingestion.


Assuntos
Cáusticos , Animais , Células Epiteliais , Epitélio , Camundongos , Hidróxido de Sódio , Língua
4.
Sensors (Basel) ; 20(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942708

RESUMO

Graphene oxide (GO)/peptide complexes as a promising disease biomarker analysis platform have been used to detect proteolytic activity by observing the turn-on signal of the quenched fluorescence upon the release of peptide fragments. However, the purification steps are often cumbersome during surface modification of nano-/micro-sized GO. In addition, it is still challenging to incorporate the specific peptides into GO with proper orientation using conventional immobilization methods based on pre-synthesized peptides. Here, we demonstrate a robust magnetic GO (MGO) fluorescence resonance energy transfer (FRET) platform based on in situ sequence-specific peptide synthesis of MGO. The magnetization of GO was achieved by co-precipitation of an iron precursor solution. Magnetic purification/isolation enabled efficient incorporation of amino-polyethylene glycol spacers and subsequent solid-phase peptide synthesis of MGO to ensure the oriented immobilization of the peptide, which was evaluated by mass spectrometry after photocleavage. The FRET peptide MGO responded to proteases such as trypsin, thrombin, and ß-secretase in a concentration-dependent manner. Particularly, ß-secretase, as an important Alzheimer's disease marker, was assayed down to 0.125 ng/mL. Overall, the MGO platform is applicable to the detection of other proteases by using various peptide substrates, with a potential to be used in an automated synthesis system operating in a high throughput configuration.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Grafite , Peptídeo Hidrolases , Peptídeos/síntese química , Óxidos
5.
Org Biomol Chem ; 13(15): 4539-50, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25778104

RESUMO

Concise and stereocontrolled syntheses of (+)-hyacinthacine A2 and sphingofungin B were achieved via a diastereomerically enriched oxazine intermediate. The key strategies include palladium(0)-catalyzed intramolecular oxazine formation and diastereoselective nucleophilic addition to an aldehyde. (+)-Hyacinthacine A2 was synthesized in 13 steps and 10.2% overall yield and the synthesis of sphingofungin B proceeded in a linear sequence over 15 steps and 6.9% overall yield from (R)-methyl 2-benzamido-3-((tert-butyldimethylsilyl)oxy)propanoate.


Assuntos
Produtos Biológicos/síntese química , Oxazinas/química , Alcaloides de Pirrolizidina/síntese química , Aminoácidos/síntese química , Aminoácidos/química , Aspergillus fumigatus/química , Produtos Biológicos/química , Ácidos Graxos Insaturados/síntese química , Ácidos Graxos Insaturados/química , Liliaceae/química , Oxazinas/síntese química , Paládio/química , Alcaloides de Pirrolizidina/química , Estereoisomerismo
6.
J Nanosci Nanotechnol ; 14(4): 2925-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24734712

RESUMO

In-situ catalytic cracking of xylan, a model compound of hemicellulose, was carried out using pyrolysis-gas chromatography/mass spectrometry over mesoporous Y for the first time. Experiments were conducted at three different temperatures, 400 degrees C, 450 degrees C, and 500 degrees C, to investigate the effect of reaction temperature. Three different biomass-to-catalyst ratios, 1:1, 1:2, and 1:3, were tested at 500 degrees C to examine the effect of catalyst dose. In addition, the catalytic activity of mesoporous Y was compared with that of Al-MCM-41. The catalysts used were characterized by N2 adsorption-desorption, temperature programmed desorption of NH3, and X-ray diffraction. The main pyrolysis products of xylan were acids, hydrocarbons, phenolics, oxygenates, aromatics, and polycyclic aromatic hydrocarbons. Mesoporous Y, which has acid sites with larger quantity and stronger acidity than those of Al-MCM-41, was shown to enhance the quality of bio-oil to a larger extent, producing a larger quantity of high-value-added products, such as aromatics and furans.


Assuntos
Xilanos/química , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos/química , Porosidade , Dióxido de Silício/química , Temperatura , Difração de Raios X , Zeolitas/química
7.
J Nanosci Nanotechnol ; 14(3): 2414-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24745240

RESUMO

Catalytic pyrolysis of kraft lignin was carried out using pyrolysis gas chromatography/mass spectrometry. Hierarchical mesoporous MFI was used as the catalyst and another mesoporous material Al-SBA-15 was also used for comparison. The characteristics of mesoporous MFI were analyzed by X-ray diffraction patterns, N2 adsorption-desorption isotherms, and temperature programmed desorption of NH3. Two catalyst/lignin mass ratios were tested: 5/1 and 10/1. Aromatics and alkyl phenolics were the main products of the catalytic pyrolysis of lignin over mesoporous MFI. In particular, the yields of mono-aromatics such as benzene, toluene, ethylbenzene, and xylene were increased substantially by catalytic upgrading. Increase in the catalyst dose enhanced the production of aromatics further, which is attributed to decarboxylation, decarbonlyation, and aromatization reactions occurring over the acid sites of mesoporous MFI.


Assuntos
Lignina/química , Zeolitas/química , Adsorção , Alumínio/química , Benzeno/química , Derivados de Benzeno/química , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Fenol/química , Pressão , Dióxido de Silício/química , Temperatura , Tolueno/química , Difração de Raios X , Xilenos/química
8.
J Nanosci Nanotechnol ; 14(7): 5120-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24757989

RESUMO

Mesoporous Y zeolite (Meso-Y) was applied, for the first time, to the catalytic pyrolysis of cellulose which is a major constituent of lignocellulosic biomass, to produce high-quality bio-oil. A representative mesoporous catalyst Al-MCM-41 was also used to compare its catalytic activity with that of Meso-Y. Pyrolysis-gas chromatography/mass spectrometry was used for the experiments. Meso-Y, with higher acidity, led to larger yields of aromatics and furans with high value-added than Al-MCM-41, resulting in the production of bio-oil with higher quality. The effect of temperature on the catalytic pyrolysis was not significant within the range of 400-500 degrees C. When the Meso-Y to cellulose ratio was increased from 1/1 via 2/1 to 3/1, the deoxygenation efficiency increased, leading to increased yield of aromatics.

9.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124439

RESUMO

In this study, the characteristics of grout mixed with charcoal as an expansive agent were examined to reduce the pre-hardening shrinkage of cementitious materials. This study compared and reviewed the application of CSA, a conventional expansive agent, to grout. The setting time, fluidity, compressive strength, and pre-hardening shrinkage/expansion were evaluated to explore the usability of charcoal as an expansive agent. The test results confirmed that, as the incorporation rate of charcoal increased, the pre-hardening expansion rate of the grout also increased, making it more effective for pre-hardening expansion than the conventional expansive agent CSA. However, when charcoal was used as an expansive agent, the compressive strength decreased after hardening, indicating the need for caution regarding the amount of charcoal used. Furthermore, the pre-hardening shrinkage and expansion rates of the various types of charcoal used in this study showed some differences, suggesting the need for further research on the internal pore volume and pore size of the charcoal.

10.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38215747

RESUMO

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteogenômica , Animais , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogênicas B-raf , Proteômica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Anal Chem ; 85(6): 3050-2, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23131036

RESUMO

We report the design, fabrication, and first functional verification of mid-infrared (MIR; 3-12 µm) Mach-Zehnder interferometers (MZIs). The developed MIR-MZIs are entirely chip-integrated solid-state devices based on GaAs/AlGaAs technology waveguide fabricated via conventional optical lithography and reactive ion etching (RIE). Thus, fabricated MIR-MZIs were combined with a broadly tunable quantum cascade laser (tQCL) providing a wavelength coverage of 5.78-6.35 µm. MIR-MZIs have been designed with a waveguide width of 5 µm to ensure single mode behavior, avoiding optically undefined interference patterns. Several structures with different opening angles of the Y-junction were fabricated and tested for maximizing IR radiation throughput. This study demonstrates the feasibility of the very first chip-integrated mid-infrared Mach-Zehnder structures via interference patterns produced by minute amounts of water deposited at different positions of the MIR-MZI structure.


Assuntos
Alumínio , Arsenicais , Desenho de Equipamento/métodos , Gálio , Dispositivos Ópticos , Alumínio/química , Arsenicais/química , Gálio/química , Interferometria/métodos , Espectrofotometria Infravermelho/métodos
12.
Anal Bioanal Chem ; 405(14): 4945-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23503745

RESUMO

The (12)CO2/(13)CO2 isotope ratio is a well-known marker in breath for a variety of biochemical processes and enables monitoring, e.g., of the glucose metabolism during sepsis. Using animal models-here, at a mouse intensive care unit-the simultaneous determination of (12)CO2 and (13)CO2 within small volumes of mouse breath was enabled by coupling a novel low-volume hollow waveguide gas cell to a compact Fourier transform infrared spectrometer combined with multivariate data evaluation based on partial least squares regression along with optimized data preprocessing routines.


Assuntos
Testes Respiratórios/instrumentação , Dióxido de Carbono/metabolismo , Expiração/fisiologia , Troca Gasosa Pulmonar/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Animais , Isótopos de Carbono/análise , Interpretação Estatística de Dados , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
J Nanosci Nanotechnol ; 13(4): 2566-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23763130

RESUMO

Mesoporous SBA-15-based catalysts were applied, for the first time, to the pyrolysis of waste mandarin residue. Si-SBA-15 with few acid sites, Al-SBA-15 with a significant amount of acid sites owing to the alumination treatment, and Pt/Al-SBA-15, which was synthesized by incorporating 7.1-nm Pt nanoparticles on Al-SBA-15, were used. Pyrolysis experiments were conducted by pyrolysis gas chromatography/mass spectroscopy to determine the catalytic activities of the catalysts used. X-ray diffraction, nitrogen adsorption, NH3-temperature-programmed desorption and transmission electron microscopy were used to characterize the catalysts. Al-SBA-15 produced higher quality bio-oil than Si-SBA-15 due to its better deoxygenation and cracking performance stemming from the presence of acid sites. Pt/Al-SBA-15 showed the highest oxygenate conversion as well as the largest yield of high-value-added compounds, such as aromatics, low-molecular-mass hydrocarbons and furans.

14.
J Nanosci Nanotechnol ; 13(1): 718-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23646805

RESUMO

Catalytic pyrolysis of waste mandarin was performed using nanoporous catalysts. AI-MCM-41 and Meso-MFI, which had different acid characteristics, were used. In addition, the characteristics of Pt/Meso-MFI were compared with those of Meso-MFI. To analyze the characteristics of the catalyst samples, Brunauer-Emmett-Teller surface area, temperature programmed desorption of NH3, and N2 adsorption-desorption analyses were performed. In addition, pyrolysis gas chromatography/mass spectrometry was used to facilitate the direct analysis of the pyrolytic products. The products obtained from catalytic pyrolysis contained a greater amount of valuable components than did those obtained from non-catalytic pyrolysis, indicating that catalytic pyrolysis improved the quality of the bio-oil. Additionally, valuable products such as furan and aromatic compounds were produced in greater quantities when Meso-MFI was used. When Pt/Meso-MFI was used, the amounts of furan and aromatic compounds produced increased even further.


Assuntos
Conservação dos Recursos Naturais/métodos , Calefação/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Eliminação de Resíduos/métodos , Resíduos , Catálise , Tamanho da Partícula , Porosidade
15.
J Cosmet Laser Ther ; 15(6): 318-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23713760

RESUMO

BACKGROUND: Light amplification by stimulated emission of radiation (LASER) diode irradiation (LDI) has some beneficial effects on the wound healing. However, little is known about the biochemical effect of LDI on wound healing. We have performed animal study to clarify the effect of LDI on wound healing based on microscopic findings. METHODS: Eight-month-old male rats (NTacSam:SD, SamtakoBioKorea), weighting 250-300 g, were used. Round blade, of 1 cm diameter, was penetrated through the skin and subcutaneous level after elevating the skin just above the thoracic spine of the rats. Laser diode of 655, 785, and 850 nm wavelengths were irradiated to the skin wound for 9 days, 20 min a day. Eight rats were used in each four groups including non-irradiated group. Immunochemical staining was carried out to evaluate pan-cytokeratin and actin, and Masson's trichrome staining was carried to evaluate the cellular and protein components relating to wound healing. Wound size was measured on 9th postoperative day with computer system. RESULT: Collagen formation was graded as 2+, 3+, and 4 + in the order of non-radiation group, 655, 785, and 850 nm irradiation groups, respectively. Myofibroblast was formed more abundantly in LDI group than in non-irradiated group. The mean values of proliferating cell nuclear antigen (PCNA) were 67.8 ± 5.0, 84.0 ± 4.6, 78.0 ± 6.8, and 74.2 ± 4.0 nm in the order of non-radiation group, 655, 785, and 850 nm irradiation groups, respectively. Mean values of defect size were 2,840 ± 124 um, 1,689 ± 125 um, 1,254 ± 94 um, and 1,423 ± 113 in the order of non-radiation group, 65, 785, and 850 nm groups, respectively. CONCLUSION: LDI has beneficial effects on the formation of fibroblast and collagen, and results in better wound healing.


Assuntos
Lasers Semicondutores , Pele/efeitos da radiação , Cicatrização/efeitos da radiação , Actinas/metabolismo , Animais , Colágeno/biossíntese , Queratinas/metabolismo , Masculino , Miofibroblastos/efeitos da radiação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Pele/anatomia & histologia , Pele/metabolismo
16.
Nat Commun ; 14(1): 5760, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717044

RESUMO

The severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation is facilitated by attractive interactions that promote the formation of new dislocations that are more efficient in mediating strain. Dislocation networks form fragmented structures, as dislocation growth is blocked by either attractive interactions, which result in the formation of sessile dislocation junctions, or by repulsion from perpendicular segments. The strength of these blocking mechanisms decreases with the thickness of the crystal film. These results reveal the critical role of dislocation interactions in plastic deformation of thin films and can be readily generalized from the colloidal to the atomic scale.

17.
RSC Adv ; 13(45): 31480-31486, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37901265

RESUMO

Capacitive deionization (CDI) is an electrochemical-based water treatment technology that has attracted attention as an effective hardness-control process. However, few systematic studies have reported the criteria for the selection of suitable electrode materials for membrane capacitive deionization (MCDI) to control hardness. In this study, the effect of electrode material characteristics on the MCDI performance for hardness control was quantitatively analyzed. The results showed that the deionization capacity and the deionization rate were affected by the specific capacitance and BET-specific surface area of the activated carbon electrode. In addition, the deionization rate also showed significant relationship with the BET specific surface area. Furthermore, it was observed that the deionization capacity and the deionization rate have a highly significant relationship with the BET specific surface area divided by the wettability performance expressed as the minimum wetting rate (MWR). These findings highlighted that the electrode material should have a large surface area and good wettability to increase the deionization capacity and the deionization rate of MCDI for hardness control. The results of this study are expected to provide effective criteria for selecting MCDI electrode materials aiming hardness control.

18.
Analyst ; 137(10): 2322-7, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22249166

RESUMO

We demonstrate ultra-sensitive chemical sensing in the mid-infrared spectral regime with a combination of quantum cascade lasers (QCLs) with GaAs/Al(0.2)Ga(0.8)As strip waveguides fabricated via metal-organic vapor-phase epitaxy (MOVPE) and reactive ion etching (RIE) using evanescent field absorption spectroscopy. These strip waveguides have been designed with a width of 200 µm, thereby facilitating 2-D confinement and mode-matched propagation of mid-infrared radiation emitted from a distributed feedback (DFB) QCL at a wavelength of 10.3 µm. Acetic anhydride was detected with a limit of detection (LOD) of 18 pL (19.4 ng) deposited at the waveguide surface by overlapping of the vibrational absorption of the methyl group with the emission frequency of the QCL. The obtained results indicate a remarkable enhancement in sensitivity by three orders of magnitude compared to previously reported multimode planar silver halide waveguides. Further reduction of the waveguide strip width to 50 µm resulted in an additional sensitivity enhancement yielding a calculated LOD of 0.05 pL for the exemplary analyte acetic anhydride, which is among the most sensitive evanescent field absorption measurements with a miniaturized mid-infrared sensor system reported to date.

19.
Anal Bioanal Chem ; 402(1): 397-404, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086399

RESUMO

Mouse sepsis models are used to gain insight into the complex processes involved with patients suffering from glucose metabolism disorders. Measuring the expiratory release of (13)CO(2) after administering stable labeled (13)C(6)-glucose enables assessment of the in vivo integrity and functionality of key metabolic processes. In the present study, we demonstrate that Fourier transform infrared spectroscopy operating in the mid-infrared spectral regime (2-20 µm) combined with hollow waveguide gas sensing modules simultaneously serving as a miniaturized gas cell and as a waveguide are capable of quantitatively monitoring (13)CO(2) enrichment levels in low volume mouse breath samples.


Assuntos
Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Dióxido de Carbono/análise , Transtornos do Metabolismo de Glucose/diagnóstico , Transtornos do Metabolismo de Glucose/fisiopatologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Técnicas Biossensoriais/instrumentação , Testes Respiratórios/instrumentação , Dióxido de Carbono/metabolismo , Expiração , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Humanos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação
20.
Angew Chem Int Ed Engl ; 51(16): 3842-5, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22411696

RESUMO

The chemical conversion of methanol in direct methanol fuel cells was followed in situ by NMR spectroscopy. Comparing data of the methanol oxidation on Pt and PtRu anode catalysts allowed the role of Ru in both Faradaic and non-Faradaic reactions to be investigated. The spatial distributions of chemicals could also be determined. (Picture: T1-T4=inlet and outlet tubes.).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA