Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396893

RESUMO

Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiologia , Melhoramento Vegetal , Proteínas/metabolismo , Resistência à Doença/genética , Proteínas de Repetições Ricas em Leucina , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Proteomics ; 23(12): e2300035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058097

RESUMO

Rice is a major component of the human diet and feeds more than 50 million people across the globe. We previously developed two pigmented rice cultivars, Super-hongmi (red seeds) and Super-jami (black seeds), that are highly rich in antioxidants and exhibit high levels of radical scavenging activities. However, the molecular mechanism underlying the accumulation of pigments and different antioxidants in these rice cultivars remains largely elusive. Here, we report the proteome profiles of mature Super-hongmi and Super-jami seeds, and compared them with the Hopum (white seeds) using a label-free quantitative proteomics approach. This approach led to the identification of 5127 rice seed proteins of which 1628 showed significant changes in the pigmented rice cultivar(s). The list of significantly modulated proteins included a phytoene desaturase (PDS3) which suggested accumulation of ζ-carotene in red seeds while the black seeds seem to accumulate more of anthocyanins because of the higher abundance of dihydroflavonol 4-reductase. Moreover, proteins associated with lignin and tocopherol biosynthesis were highly increased in both red and black cultivars. Taken together, these data report the seed proteome of three different colored rice seeds and identify novel components associated with pigment accumulation in rice.


Assuntos
Antioxidantes , Oryza , Humanos , Antocianinas/metabolismo , Tocoferóis/metabolismo , Oryza/genética , Oryza/metabolismo , Proteoma/metabolismo , Sementes/metabolismo
3.
Plant J ; 110(6): 1619-1635, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388561

RESUMO

Increasing the vegetative growth period of crops can increase biomass and grain yield. In rice (Oryza sativa), the concentration of trans -zeatin, an active cytokinin, was high in the leaves during vegetative growth and decreased rapidly upon induction of florigen expression, suggesting that this hormone is involved in the regulation of the vegetative phase. To elucidate whether exogenous cytokinin application influences the length of the vegetative phase, we applied 6-benzylaminopurine (BAP) to rice plants at various developmental stages. Our treatment delayed flowering time by 8-9 days when compared with mock-treated rice plants, but only at the transition stage when the flowering signals were produced. Our observations also showed that flowering in the paddy field is delayed by thidiazuron, a stable chemical that mimics the effects of cytokinin. The transcript levels of florigen genes Heading date 3a (Hd3a) and Rice Flowering locus T1 (RFT1) were significantly reduced by the treatment, but the expression of Early heading date 1 (Ehd1), a gene found directly upstream of the florigen genes, was not altered. In maize (Zea mays), similarly, BAP treatment increased the vegetative phage by inhibiting the expression of ZCN8, an ortholog of Hd3a. We showed that cytokinin treatment induced the expression of two type-A response regulators (OsRR1 and OsRR2) which interacted with Ehd1, a type-B response regulator. We also observed that cytokinin did not affect flowering time in ehd1 knockout mutants. Our study indicates that cytokinin application increases the duration of the vegetative phase by delaying the expression of florigen genes in rice and maize by inhibiting Ehd1.


Assuntos
Oryza , Citocininas/metabolismo , Florígeno/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
4.
Plant Physiol ; 190(1): 562-575, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736513

RESUMO

Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Miosinas/genética , Miosinas/metabolismo , Oryza/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
5.
Plant Cell Environ ; 46(4): 1327-1339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36120845

RESUMO

Floral transition starts in the leaves when florigens respond to various environmental and developmental factors. Among several regulatory genes that are preferentially expressed in the inflorescence meristem during the floral transition, this study examines the homeobox genes OsZHD1 and OsZHD2 for their roles in regulating this transition. Although single mutations in these genes did not result in visible phenotype changes, double mutations in these genes delayed flowering. Florigen expression was not altered in the double mutants, indicating that the delay was due to a defect in florigen signaling. Morphological analysis of shoot apical meristem at the early developmental stage indicated that inflorescence meristem development was significantly delayed in the double mutants. Overexpression of ZHD2 causes early flowering because of downstream signals after the generation of florigens. Expression levels of the auxin biosynthesis genes were reduced in the mutants and the addition of indole-3-acetic acid recovered the defect in the mutants, suggesting that these homeobox genes play a role in auxin biosynthesis. A rice florigen, RICE FLOWERING LOCUS T 1, binds to the promoter regions of homeobox genes. These results indicate that florigens stimulate the expression of homeobox genes, enhancing inflorescence development in the shoot apex.


Assuntos
Inflorescência , Meristema , Meristema/genética , Fatores de Transcrição/metabolismo , Florígeno/metabolismo , Genes Homeobox , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética
6.
Crit Rev Food Sci Nutr ; 63(5): 613-640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34278879

RESUMO

Ginsenosides, a group of tetracyclic saponins, accounts for the nutraceutical and pharmaceutical relevance of the ginseng (Panax sp.) herb. Owing to the associated therapeutic potential of ginsenosides, their demand has been increased significantly in the last two decades. However, a slow growth cycle, low seed production, and long generation time of ginseng have created a gap between the demand and supply of ginsenosides. The biosynthesis of ginsenosides involves an intricate network of pathways with multiple oxidation and glycosylation reactions. However, the exact functions of some of the associated genes/proteins are still not completely deciphered. Moreover, ginsenoside estimation and extraction using analytical techniques are not feasible with high efficiency. The present review is a step forward in recapitulating the comprehensive aspects of ginsenosides including their distribution, structural diversity, biotransformation, and functional attributes in both plants and animals including humans. Moreover, ginsenoside biosynthesis in the potential plant sources and their metabolism in the human body along with major regulators and stimulators affecting ginsenoside biosynthesis have also been discussed. Furthermore, this review consolidates biotechnological interventions to enhance the biosynthesis of ginsenosides in their potential sources and advancements in the development of synthetic biosystems for efficient ginsenoside biosynthesis to meet their rising industrial demands.


Assuntos
Ginsenosídeos , Panax , Saponinas , Humanos , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Saponinas/química , Biotecnologia/métodos , Vias Biossintéticas , Panax/química , Panax/metabolismo
7.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835581

RESUMO

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Assuntos
Fosfatidilinositol 3-Quinases , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células PC12 , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Proteômica , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Crescimento Neuronal
8.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835103

RESUMO

Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng.


Assuntos
Arabidopsis , Panax , Proteínas de Plantas/genética , Proteoma/metabolismo , Hidrolases/metabolismo , Panax/metabolismo , Proteômica , Clorofila A/metabolismo , Tolerância ao Sal , Arabidopsis/metabolismo , Estresse Fisiológico , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838553

RESUMO

The biological and psychological importance of hair is recognized worldwide. Molecules that can promote the activation of hair follicle stem cells and the initiation of the growth phase have been subjects of research. Clarifying how hair regeneration is regulated may help to provide hair loss treatments, including cosmetic and even psychological interventions. We examined the hair-growing effects of a cell extract (CE) obtained from cactus Notocactus ottonis by the cold vacuum extraction protocol, by investigating its hair-growing effects, relevant mechanisms, and potential factors therein. Using male C57BL/6 mice, vehicle control (VC: propylene glycol: ethanol: water), MXD (minoxidil, positive control), and N. ottonis CE (N-CE, experimental) were applied topically to the backs of mice. The results showed that MXD and N-CE were more effective in promoting hair growth than VC. An increase in number of hair follicles was observed with N-CE in hematoxylin-eosin-stained skin tissue. The metabolite composition of N-CE revealed the presence of growth-promoting factors. Using mouse back whole-skin tissue samples, whole-genome DNA microarray (4 × 44 K, Agilent) and proteomics (TMT-based liquid chromatography-tandem mass spectrometry) analyses were carried out, suggesting the molecular factors underlying hair-promoting effects of N-CE. This study raises the possibility of using the newly described N. ottonis CE as a hair-growth-promoting agent.


Assuntos
Cabelo , Extratos Vegetais , Camundongos , Animais , Extratos Celulares/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL , Folículo Piloso/metabolismo
10.
J Integr Plant Biol ; 65(9): 2218-2236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37195059

RESUMO

Pollen tube growth is essential for successful double fertilization, which is critical for grain yield in crop plants. Rapid alkalinization factors (RALFs) function as ligands for signal transduction during fertilization. However, functional studies on RALF in monocot plants are lacking. Herein, we functionally characterized two pollen-specific RALFs in rice (Oryza sativa) using multiple clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-induced loss-of-function mutants, peptide treatment, expression analyses, and tag reporter lines. Among the 41 RALF members in rice, OsRALF17 was specifically expressed at the highest level in pollen and pollen tubes. Exogenously applied OsRALF17 or OsRALF19 peptide inhibited pollen tube germination and elongation at high concentrations but enhanced tube elongation at low concentrations, indicating growth regulation. Double mutants of OsRALF17 and OsRALF19 (ralf17/19) exhibited almost full male sterility with defects in pollen hydration, germination, and tube elongation, which was partially recovered by exogenous treatment with OsRALF17 peptide. This study revealed that two partially functionally redundant OsRALF17 and OsRALF19 bind to Oryza sativa male-gene transfer defective 2 (OsMTD2) and transmit reactive oxygen species signals for pollen tube germination and integrity maintenance in rice. Transcriptomic analysis confirmed their common downstream genes, in osmtd2 and ralf17/19. This study provides new insights into the role of RALF, expanding our knowledge of the biological role of RALF in regulating rice fertilization.


Assuntos
Oryza , Tubo Polínico , Tubo Polínico/genética , Pólen/genética , Transdução de Sinais , Peptídeos
11.
Plant J ; 107(4): 1131-1147, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143922

RESUMO

The highly specialized haploid male gametophyte-pollen consist of two sperm cells and a large vegetative cell. Successful fertilization requires proper growth timing and rupture of the pollen tube until it delivers sperm cells, which occur immediately after a pollen grain hydrates. Although a tight regulation on polar cell-wall expansion of the pollen tube is fundamentally important, the underlying molecular mechanism remains largely unknown, especially in crop plants. Here, we characterized the function of male-gene transfer defective 2 (OsMTD2) gene in rice (Oryza sativa), which belongs to the plant-specific receptor-like kinase, the CrRLK1L family. We demonstrated that OsMTD2 is an essential male factor participating in pollen-tube elongation based on genetic evidence and physiological observations. Because of unavailability of homozygous mutant via conventional methods, we used CRISPR-Cas9 system to obtain homozygous knockout mutant of OsMTD2. We were able to identify phenotypic changes including male sterility due to early pollen-tube rupture in the mutant. We observed that the production of reactive oxygen species (ROS) was dramatically reduced in mutants of OsMTD2 pollen grain and tubes with defective pectin distribution. Transcriptome analysis of osmtd2-2 versus wild-type anthers revealed that genes involved in defense responses, metabolic alteration, transcriptional and protein modification were highly upregulated in the osmtd2-2 mutant. Through yeast-two-hybrid screening, we found that OsMTD2 kinase interacts with E3 ligase SPL11. Taken together, we propose that OsMTD2 has crucial functions in promoting pollen-tube elongation through cell-wall modification, possibly by modulating ROS homeostasis during pollen-tube growth.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido
12.
Plant J ; 105(6): 1645-1664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345419

RESUMO

Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Germinação/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , RNA-Seq
13.
RNA Biol ; 19(1): 373-385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311472

RESUMO

Alternative splicing (AS) contributes to diversifying and regulating cellular responses to environmental conditions and developmental cues by differentially producing multiple mRNA and protein isoforms from a single gene. Previous studies on AS in pathogenic fungi focused on profiling AS isoforms under a limited number of conditions. We analysed AS profiles in the rice blast fungus Magnaporthe oryzae, a global threat to rice production, using high-quality transcriptome data representing its vegetative growth (mycelia) and multiple host infection stages. We identified 4,270 AS isoforms derived from 2,413 genes, including 499 genes presumably regulated by infection-specific AS. AS appears to increase during infection, with 32.7% of the AS isoforms being produced during infection but absent in mycelia. Analysis of the isoforms observed at each infection stage showed that 636 AS isoforms were more abundant than corresponding annotated mRNAs, especially after initial hyphal penetration into host cell. Many such dominant isoforms were predicted to encode regulatory proteins such as transcription factors and phospho-transferases. We also identified the genes encoding distinct proteins via AS and confirmed the translation of some isoforms via a proteomic analysis, suggesting potential AS-mediated neo-functionalization of some genes during infection. Comprehensive profiling of the pattern of genome-wide AS during multiple stages of rice-M. oryzae interaction established a foundational resource that will help investigate the role and regulation of AS during rice infection.


Assuntos
Magnaporthe , Oryza , Processamento Alternativo , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteoma/genética , Proteômica , Transcriptoma
14.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216337

RESUMO

C2 domain-containing proteins (C2DPs) have been identified in different genomes that contain single or multiple C2 domains in their C- or N-terminal. It possesses higher functional activity in the transmembrane regions. The identification of C2 domains were reported in a previous study, such as multiple C2 domains and transmembrane-region proteins (MCTPs) and N-terminal-TM-C2 domain proteins (NTMC2s) of rice, Arabidopsis thaliana, and cotton, whereas the C2DP gene family in rice has not been comprehensively studied, and the role of the C2DP gene in rice in response to abiotic stress is not yet fully understood. In this study, we identified 82 C2DPs in the rice genome and divided them into seven groups through phylogenetic analysis. The synteny analysis revealed that duplication events were either exhibited within the genome of rice or between the genomes of rice and other species. Through the analysis of cis-acting elements in promoters, expression profiles, and qRT-PCR results, the functions of OsC2DPs were found to be widely distributed in diverse tissues and were extensively involved in phytohormones-related and abiotic stresses response in rice. The prediction of the microRNA (miRNA) targets of OsC2DPs revealed the possibility of regulation by consistent miRNAs. Notably, OsC2DP50/51/52 as a co-tandem duplication exhibited similar expression variations and involved the coincident miRNA-regulation pathway. Moreover, the results of the genotypic variation and haplotype analysis revealed that OsC2DP17, OsC2DP29, and OsC2DP49 were associated with cold stress responses. These findings provided comprehensive insights for characterizations of OsC2DPs in rice as well as for their roles for abiotic stress.


Assuntos
Domínios C2/genética , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Família Multigênica/genética , Sequências Reguladoras de Ácido Nucleico/genética
15.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164374

RESUMO

The present research investigates the tuber proteome of the 'medicinal' plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as 'kiku-imo') as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.


Assuntos
Helianthus/metabolismo , Tubérculos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos
16.
Plant J ; 104(2): 532-545, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652789

RESUMO

Rice (Oryza sativa L.) is a staple crop with agricultural traits that have been intensively investigated. However, despite the variety of mutant population and multi-omics data that have been generated, rice functional genomic research has been bottlenecked due to the functional redundancy in the genome. This phenomenon has masked the phenotypes of knockout mutants by functional compensation and redundancy. Here, we present an intuitive tool, CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice (CAFRI-Rice; cafri-rice.khu.ac.kr). To create this tool, we generated a phylogenetic heatmap that can estimate the similarity between protein sequences and expression patterns, based on 2,617 phylogenetic trees and eight tissue RNA-sequencing datasets. In this study, 33,483 genes were sorted into 2,617 families, and about 24,980 genes were tested for functional redundancy using a phylogenetic heatmap approach. It was predicted that 7,075 genes would have functional redundancy, according to the threshold value validated by an analysis of 111 known genes functionally characterized using knockout mutants and 5,170 duplicated genes. In addition, our analysis demonstrated that an anther/pollen-preferred gene cluster has more functional redundancy than other clusters. Finally, we showed the usefulness of the CAFRI-Rice-based approach by overcoming the functional redundancy between two root-preferred genes via loss-of-function analyses as well as confirming the functional dominancy of three genes through a literature search. This CAFRI-Rice-based target selection for CRISPR/Cas9-mediated mutagenesis will not only accelerate functional genomic studies in rice but can also be straightforwardly expanded to other plant species.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genômica/métodos , Oryza/genética , Proteínas de Plantas/genética , Software , Visualização de Dados , Duplicação Gênica , Genoma de Planta , Família Multigênica , Mutagênese , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polinização
17.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073070

RESUMO

Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis , Microtúbulos/fisiologia , Oryza , Tolerância ao Sal , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Plantas Geneticamente Modificadas/fisiologia
18.
New Phytol ; 227(5): 1568-1581, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32392385

RESUMO

Whole-genome annotation error that omits essential protein-coding genes hinders further research. We developed Target Gene Family Finder (TGFam-Finder), an alternative tool for the structural annotation of protein-coding genes containing target domain(s) of interest in plant genomes. TGFam-Finder took considerably reduced annotation run-time and improved accuracy compared to conventional annotation tools. Large-scale re-annotation of 50 plant genomes identified an average of 150, 166 and 86 additional far-red-impaired response 1, nucleotide-binding and leucine-rich-repeat, and cytochrome P450 genes, respectively, that were missed in previous annotations. We detected significantly higher number of translated genes in the new annotations using mass spectrometry data from seven plant species compared to previous annotations. TGFam-Finder along with the new gene models can provide an optimized platform for comprehensive functional, comparative, and evolutionary studies in plants.


Assuntos
Genoma de Planta , Plantas , Genoma de Planta/genética , Anotação de Sequência Molecular , Plantas/genética
19.
Expert Rev Proteomics ; 16(9): 795-804, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398080

RESUMO

Introduction: The last decade has yielded significant developments in the field of proteomics, especially in mass spectrometry (MS) and data analysis tools. In particular, a shift from gel-based to MS-based proteomics has been observed, thereby providing a platform with which to construct proteome atlases for all life forms. Nevertheless, the analysis of plant proteomes, especially those of samples that contain high-abundance proteins (HAPs), such as soybean seeds, remains challenging. Areas covered: Here, we review recent progress in soybean seed proteomics and highlight advances in HAPs depletion methods and peptide pre-fractionation, identification, and quantification methods. We also suggest a pipeline for future proteomic analysis, in order to increase the dynamic coverage of the soybean seed proteome. Expert opinion: Because HAPs limit the dynamic resolution of the soybean seed proteome, the depletion of HAPs is a prerequisite of high-throughput proteome analysis, and owing to the use of two-dimensional gel electrophoresis-based proteomic approaches, few soybean seed proteins have been identified or characterized. Recent advances in proteomic technologies, which have significantly increased the proteome coverage of other plants, could be used to overcome the current complexity and limitation of soybean seed proteomics.


Assuntos
Glycine max/genética , Proteoma/genética , Sementes/genética , Proteínas de Soja/genética , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Proteômica , Proteínas de Soja/isolamento & purificação
20.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450622

RESUMO

MSP1 is a Magnaporthe oryzae secreted protein that elicits defense responses in rice. However, the molecular mechanism of MSP1 action is largely elusive. Moreover, it is yet to be established whether MSP1 functions as a pathogen-associated molecular pattern (PAMP) or an effector. Here, we employed a TMT-based quantitative proteomic analysis of cytosolic as well as plasma membrane proteins to decipher the MSP1 induced signaling in rice. This approach led to the identification of 6691 proteins, of which 3049 were identified in the plasma membrane (PM), while 3642 were identified in the cytosolic fraction. A parallel phosphoproteome analysis led to the identification of 1906 phosphopeptides, while the integration of proteome and phosphoproteome data showed activation of proteins related to the proteolysis, jasmonic acid biosynthesis, redox metabolism, and MAP kinase signaling pathways in response to MSP1 treatment. Further, MSP1 induced phosphorylation of some of the key proteins including respiratory burst oxidase homologue-D (RBOHD), mitogen-activated protein kinase kinase kinase-1 (MEKK1), mitogen-activated protein kinase-3/6 (MPK3/6), calcium-dependent protein kinase (CDPK) and calmodulin (CaM) suggest activation of PAMP-triggered immunity (PTI) in response to MSP1 treatment. In essence, our results further support the functioning of MSP1 as a PAMP and provide an overview of the MSP1 induced signaling in rice leaves.


Assuntos
Proteína 1 de Superfície de Merozoito/metabolismo , Oryza/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Transdução de Sinais , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteína 1 de Superfície de Merozoito/genética , Oryza/genética , Fosfoproteínas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteômica/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA