Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 24(1): 4-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398980

RESUMO

The trans-Golgi Network (TGN) sorts molecular "addresses" and sends newly synthesized proteins to their destination via vesicular transport carriers. Despite the functional significance of packaging processes at the TGN, the sorting of soluble proteins remains poorly understood. Recent research has shown that the Golgi resident protein Cab45 is a significant regulator of secretory cargo sorting at the TGN. Cab45 oligomerizes upon transient Ca2+ influx, recruits soluble cargo molecules (clients), and packs them in sphingomyelin-rich transport carriers. However, the identity of client molecules packed into Cab45 vesicles is scarce. Therefore, we used a precise and highly efficient secretome analysis technology called hiSPECs. Intriguingly, we observed that Cab45 deficient cells manifest hypersecretion of lysosomal hydrolases. Specifically, Cab45 deficient cells secrete the unprocessed precursors of prosaposin (PSAP) and progranulin (PGRN). In addition, lysosomes in these cells show an aberrant perinuclear accumulation suggesting a new role of Cab45 in lysosomal positioning. This work uncovers a yet unknown function of Cab45 in regulating lysosomal function.


Assuntos
Proteínas , Saposinas , Humanos , Transporte Biológico , Lisossomos/metabolismo , Progranulinas/metabolismo , Transporte Proteico/fisiologia , Proteínas/metabolismo , Saposinas/genética , Saposinas/metabolismo , Rede trans-Golgi/metabolismo
2.
Theor Appl Genet ; 137(9): 202, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39134894

RESUMO

KEY MESSAGE: Pigmentation changes in canopy leaves were first reported, and subsequent genetic analyses identified a major QTL associated with levels of pigmentation changes, suggesting Glyma.06G202300 as a candidate gene. An unexpected reddish-purple pigmentation in upper canopy leaves was discovered during the late reproductive stages in soybean (Glycine max L.) genotypes. Two sensitive genotypes, 'Uram' and PI 96983, exhibited anomalous canopy leaf pigmentation changes (CLPC), while 'Daepung' did not. The objectives of this study were to: (i) characterize the physiological features of pigmented canopy leaves compared with non-pigmented leaves, (ii) evaluate phenotypic variation in a combined recombinant inbred line (RIL) population (N = 169 RILs) under field conditions, and (iii) genetically identify quantitative trait loci (QTL) for CLPC via joint population linkage analysis. Comparison between pigmented and normal leaves revealed different Fv/Fm of photosystem II, hyperspectral reflectance, and cellular properties, suggesting the pigmentation changes occur in response to an undefined abiotic stress. A highly significant QTL was identified on chromosome 6, explaining ~ 62.8% of phenotypic variance. Based on the QTL result, Glyma.06G202300 encoding flavonoid 3'-hydroxylase (F3'H) was identified as a candidate gene. In both Uram and PI 96983, a 1-bp deletion was confirmed in the third exon of Glyma.06G202300 that results in a premature stop codon in both Uram and PI 96983 and a truncated F3'H protein lacking important domains. Additionally, gene expression analyses uncovered significant differences between pigmented and non-pigmented leaves. This is the first report of a novel symptom and an associated major QTL. These results will provide soybean geneticists and breeders with valuable knowledge regarding physiological changes that may affect soybean production. Further studies are required to elucidate the causal environmental stress and the underlying molecular mechanisms.


Assuntos
Mapeamento Cromossômico , Genótipo , Glycine max , Fenótipo , Pigmentação , Folhas de Planta , Locos de Características Quantitativas , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Folhas de Planta/genética , Pigmentação/genética , Ligação Genética
3.
Pestic Biochem Physiol ; 187: 105210, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127054

RESUMO

Drosophila suzukii is a serious agricultural pest. The evolved morphology of the female D. suzukii assists in penetrating the surface of fresh fruit and spawns eggs with its unique ovipositor. Conversely, Drosophila melanogaster, a taxonomically close species with D. suzukii, largely inhabits decaying and fermenting fruits and is consistently exposed to extensive environmental chemicals, such as 2-phenylethanol, ethanol, and acetic acid, produced by microorganisms. Considering the distinct habitats of the two flies, D. suzukii is thought to be more susceptible to environmental chemicals than D. melanogaster. We investigated the significantly higher survival rate of D. melanogaster following exposure to 2-phenylethanol, ethanol, and acetic acid. A comparison of the expression of antimicrobial peptides (AMPs) between the two flies treated with chemicals established that AMPs were generally more abundantly induced in D. melanogaster than in D. suzukii, particularly in the gut and fat body. Among the AMPs, the induction of genes (Diptericin A, Diptericin B, and Metchnikowin), which are regulated by the immune deficiency (IMD) pathway, was significantly higher than that of Drosomycin, which belongs to the Toll pathway in chemical-treated D. melanogaster. A transgenic RNAi fly (D. melanogaster) with silenced expression of AMPs and Relish, a transcription factor of the IMD pathway, exhibited significantly reduced survival rates than the control fly. Our results suggest that AMPs regulated by the IMD pathway play an important role in the chemical tolerance of D. melanogaster, and these flies are adapted to their habitats by physiological response.


Assuntos
Drosophila melanogaster , Álcool Feniletílico , Animais , Peptídeos Antimicrobianos , Drosophila , Drosophila melanogaster/genética , Fatores de Transcrição
4.
Proc Natl Acad Sci U S A ; 115(7): 1652-1657, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382746

RESUMO

Understanding the unique features of triacylglycerol (TAG) metabolism in microalgae may be necessary to realize the full potential of these organisms for biofuel and biomaterial production. In the unicellular green alga Chlamydomonas reinhardtii a chloroplastic (prokaryotic) pathway has been proposed to play a major role in TAG precursor biosynthesis. However, as reported here, C. reinhardtii contains a chlorophyte-specific lysophosphatidic acid acyltransferase, CrLPAAT2, that localizes to endoplasmic reticulum (ER) membranes. Unlike canonical, ER-located LPAATs, CrLPAAT2 prefers palmitoyl-CoA over oleoyl-CoA as the acyl donor substrate. RNA-mediated suppression of CrLPAAT2 indicated that the enzyme is required for TAG accumulation under nitrogen deprivation. Our findings suggest that Chlamydomonas has a distinct glycerolipid assembly pathway that relies on CrLPAAT2 to generate prokaryotic-like TAG precursors in the ER.


Assuntos
Aciltransferases/metabolismo , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Triglicerídeos/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Filogenia , Especificidade por Substrato
5.
Pestic Biochem Physiol ; 165: 104552, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359537

RESUMO

The fruit fly, Drosophila melanogaster, is predominantly found in overripe, rotten, fermenting, or decaying fruits and is constantly exposed to chemical stressors such as acetic acid, ethanol, and 2-phenylethanol. D. melanogaster has been employed as a model system for studying the molecular bases of various types of chemical-induced tolerance. Expression profiling using Illumina sequencing has been performed for identifying changes in gene expression that may be associated with evolutionary adaptation to exposure of acetic acid, ethanol, and 2-phenylethanol. We identified a total of 457 differentially expressed genes that may affect sensitivity or tolerance to three chemicals in the chemical treatment group as opposed to the control group. Gene-set enrichment analysis revealed that the genes involved in metabolism, multicellular organism reproduction, olfaction, regulation of signal transduction, and stress tolerance were over-represented in response to chemical exposure. Furthermore, we also detected a coordinated upregulation of genes in the Toll- and Imd-signaling pathways after the chemical exposure. Quantitative reverse transcription PCR analysis revealed that the expression levels of nine genes within the set of genes identified by RNA sequencing were up- or downregulated owing to chemical exposure. Taken together, our data suggest that such differentially expressed genes are coordinately affected by chemical exposure. Transcriptional analyses after exposure of D. melanogaster with three chemicals provide unique insights into subsequent functional studies on the mechanisms underlying the evolutionary adaptation of insect species to environmental chemical stressors.


Assuntos
Ácido Acético , Drosophila melanogaster , Animais , Drosophila , Etanol , Perfilação da Expressão Gênica , Álcool Feniletílico
6.
Sensors (Basel) ; 20(18)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962218

RESUMO

Infrared (IR) polarimetric imaging has attracted attention as a promising technology in many fields. Generally, superpixels consisting of linear polarizer elements at different angles plus IR imaging array are used to obtain the polarized target signature by using the detected polarization-sensitive intensities. However, the spatial arrangement of superpixels across the imaging array may lead to an incorrect polarimetric signature of a target, due to the range of angles from which the incident radiation can be collected by the detector. In this article, we demonstrate the effect of the incident angle on the polarization performance of an alternative structure where a dielectric layer is inserted between the nanoimprinted subwavelength grating layers. The well-designed spacer creates the Fabry-Perot cavity resonance, and thereby, the intensity of transverse-magnetic I-polarized light transmitted through two metal grating layers is increased as compared with a single-layer metal grating, whereas transverse-electric (TE)-transmitted light intensity is decreased. TM-transmittance and polarization extinction ratio (PER) of normally incident light of wavelength 4.5 µm are obtained with 0.49 and 132, respectively, as the performance of the stacked subwavelength gratings. The relative change of the PERs for nanoimprint-lithographically fabricated double-layer grating samples that are less than 6% at an angle of incidence up to 25°, as compared to the normal incidence. Our work can pave the way for practical and efficient polarization-sensitive elements, which are useful for many IR polarimetric imaging applications.

7.
Plant J ; 94(1): 91-104, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385296

RESUMO

In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Plantas/metabolismo , Alelos , Chlamydomonas reinhardtii/genética , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Genes de Plantas/genética , Genes de Plantas/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
Allergy ; 74(4): 675-684, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30372532

RESUMO

BACKGROUND: The most relevant time of PM10 exposure to affect airway hyperresponsiveness (AHR) and new development of asthma in school-aged children is unclear. The aims of this study were to investigate the most critical time of PM10 exposure to affect AHR and new diagnosis of asthma from AHR in school-aged children. METHODS: Elementary schoolchildren (n = 3570) have been enrolled in a nationwide prospective 4-year follow-up survey in Korea from 2005 to 2006. Individual annual PM10 exposure was estimated by using an ordinary kriging method from the prenatal period to 7 years of age. AHR at 7 years was defined by a methacholine PC20 ≤8 mg/mL. RESULTS: PM10 exposure during pregnancy and at 1 year of age showed significant effects on AHR (aOR: 1.694, 95% CI: 1.298-2.209; and aOR: 1.750, 95% CI: 1.343-2.282, respectively). PM10 exposure during pregnancy was associated with the risk of a new diagnosis of asthma (aOR: 2.056, 95% CI: 1.240-3.409), with the highest risk in children with AHR at age 7 (aOR: 6.080, 95% CI: 2.150-17.195). PM10 exposure in the second trimester was associated with the highest risk of a new diagnosis of asthma in children with AHR at age 7 (aOR: 4.136, 95% CI: 1.657-10.326). CONCLUSIONS: Prenatal PM10 exposure in the second trimester is associated with an increased risk of a new diagnosis of asthma in school-aged children with AHR at 7 years. This study suggests that PM10 exposure during a specific trimester in utero may affect the onset of childhood asthma via AHR.


Assuntos
Asma/induzido quimicamente , Material Particulado/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Hipersensibilidade Respiratória/induzido quimicamente , Criança , Feminino , Humanos , Lactente , Masculino , Material Particulado/imunologia , Gravidez , Segundo Trimestre da Gravidez , República da Coreia , Inquéritos e Questionários
9.
Plant J ; 90(6): 1079-1092, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28273364

RESUMO

Understanding the unique features of algal metabolism may be necessary to realize the full potential of algae as feedstock for the production of biofuels and biomaterials. Under nitrogen deprivation, the green alga C. reinhardtii showed substantial triacylglycerol (TAG) accumulation and up-regulation of a gene, GPD2, encoding a multidomain enzyme with a putative phosphoserine phosphatase (PSP) motif fused to glycerol-3-phosphate dehydrogenase (GPD) domains. Canonical GPD enzymes catalyze the synthesis of glycerol-3-phosphate (G3P) by reduction of dihydroxyacetone phosphate (DHAP). G3P forms the backbone of TAGs and membrane glycerolipids and it can be dephosphorylated to yield glycerol, an osmotic stabilizer and compatible solute under hypertonic stress. Recombinant Chlamydomonas GPD2 showed both reductase and phosphatase activities in vitro and it can work as a bifunctional enzyme capable of synthesizing glycerol directly from DHAP. In addition, GPD2 and a gene encoding glycerol kinase were up-regulated in Chlamydomonas cells exposed to high salinity. RNA-mediated silencing of GPD2 revealed that the multidomain enzyme was required for TAG accumulation under nitrogen deprivation and for glycerol synthesis under high salinity. Moreover, a GPD2-mCherry fusion protein was found to localize to the chloroplast, supporting the existence of a GPD2-dependent plastid pathway for the rapid synthesis of glycerol in response to hyperosmotic stress. We hypothesize that the reductase and phosphatase activities of PSP-GPD multidomain enzymes may be modulated by post-translational modifications/mechanisms, allowing them to synthesize primarily G3P or glycerol depending on environmental conditions and/or metabolic demands in algal species of the core Chlorophytes.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Glicerolfosfato Desidrogenase/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética
10.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27133096

RESUMO

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Assuntos
Aciltransferases/genética , Chlamydomonas/enzimologia , Microalgas/química , Microalgas/genética , Plastídeos/enzimologia , Microalgas/metabolismo , Óleos de Plantas/metabolismo
11.
Ann Allergy Asthma Immunol ; 117(1): 21-28.e1, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27184199

RESUMO

BACKGROUND: Allergic rhinitis (AR) has a wide range of clinical features and may be accompanied by comorbid allergic diseases. OBJECTIVE: To identify rhinitis phenotypes in school aged children and to predict the prognosis for developing bronchial hyperresponsiveness (BHR) and asthma. METHODS: This prospective follow-up study involved schoolchildren from the Children's Health and Environment Research cohort with current rhinitis, which was defined based on parental-reported, physician-diagnosed rhinitis and symptoms of rhinitis in the previous 12 months. All participants were followed up at 2 and 4 years later. Rhinitis clusters were identified by latent class analysis that used demographic, clinical, and environmental variables. RESULTS: In 512 eligible children (age range, 6-8 years), 4 rhinitis phenotypes were identified: cluster 1 (25% of children) was associated with nonatopy and a low socioeconomic status; cluster 2 (36%) was associated with a high-atopic burden but normal lung function; cluster 3 (22%) was associated with a high-atopic burden and impaired lung function; and cluster 4 (17%) was associated with low atopy and a high socioeconomic status. Cluster 3 was associated with the highest total serum IgE levels and blood eosinophil percentages at enrollment and the highest incidence of new cases of BHR (P = .04) and asthma symptoms (P = .005) during follow-up. CONCLUSION: The rhinitis cluster of schoolchildren with atopy and impaired lung function is associated with allergic march. This identification of distinct rhinitis phenotypes in affected children may help to prevent allergic march in children with rhinitis.


Assuntos
Asma/epidemiologia , Asma/etiologia , Hiper-Reatividade Brônquica/epidemiologia , Hiper-Reatividade Brônquica/etiologia , Fenótipo , Rinite/complicações , Rinite/diagnóstico , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Prevalência , Prognóstico , Estudos Prospectivos , Vigilância em Saúde Pública , República da Coreia/epidemiologia , Testes de Função Respiratória , Fatores de Risco
12.
Mol Biol Cell ; 35(4): ar50, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294859

RESUMO

Ca2+ influx into the trans-Golgi Network (TGN) promotes secretory cargo sorting by the Ca2+-ATPase SPCA1 and the luminal Ca2+ binding protein Cab45. Cab45 oligomerizes upon local Ca2+ influx, and Cab45 oligomers sequester and separate soluble secretory cargo from the bulk flow of proteins in the TGN. However, how this Ca2+ flux into the lumen of the TGN is achieved remains mysterious, as the cytosol has a nanomolar steady-state Ca2+ concentration. The TGN forms membrane contact sites (MCS) with the Endoplasmic Reticulum (ER), allowing protein-mediated exchange of molecular species such as lipids. Here, we show that the TGN export of secretory proteins requires the integrity of ER-TGN MCS and inositol 3 phosphate receptor (IP3R)-dependent Ca2+ fluxes in the MCS, suggesting Ca2+ transfer between these organelles. Using an MCS-targeted Ca2+ FRET sensor module, we measure the Ca2+ flow in these sites in real time. These data show that ER-TGN MCS facilitates the Ca2+ transfer required for Ca2+-dependent cargo sorting and export from the TGN, thus solving a fundamental question in cell biology.


Assuntos
Cálcio , Rede trans-Golgi , Cálcio/metabolismo , Rede trans-Golgi/metabolismo , Transporte Biológico , Transporte Proteico , Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Proteínas de Transporte/metabolismo
13.
Heliyon ; 10(3): e25269, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333803

RESUMO

We present research on the role of multiple quantum well periods in extended short-wavelength infrared InGaAs/InAsPSb type-I LEDs. The fabricated LEDs consisted of 6, 15, and 30 quantum well periods, and we evaluated the structural properties and device performance through a combination of theoretical simulations and experimental characterization. The strain and energy band offset was precisely controlled by carefully adjusting the composition of the InAsPSb quaternary material, achieving high valence and conduction band offsets of 350 meV and 94 meV, respectively. Our LEDs demonstrated a high degree of relaxation of 94-96 %. Additionally, we discovered that the temperature-dependent dark current characterization attributed to generation-recombination and trap-assign tunneling, with trap-assign tunneling being more dominant at lower current injections. Electroluminescence analysis revealed that the predominant emission mechanism of the LEDs originated from localized exciton and free exciton radiative recombination, which the 30 quantum wells LED exhibited the highest contribution of the localized exciton/free exciton radiative recombination. We observed that increasing the quantum well periods from 6 to 15 led to an increase in the 300 K electroluminescence intensity of the LED. However, extending the quantum well period to 30 resulted in a decline in emission intensity due to the degradation of the epitaxial film quality.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37487627

RESUMO

The sorting and trafficking of lipids between organelles gives rise to a dichotomy of bulk membrane properties between organelles of the secretory and endolysosome networks, giving rise to two "membrane territories" based on differences in lipid-packing density, net membrane charge, and bilayer leaflet asymmetries. The cellular organelle membrane dichotomy emerges from ER-to-PM anterograde membrane trafficking and the synthesis of sphingolipids and cholesterol flux at the trans-Golgi network, which constitutes the interface between the two membrane territories. Organelle homeostasis is maintained by vesicle-mediated retrieval of bulk membrane from the distal organelles of each territory to the endoplasmic reticulum or plasma membrane and by soluble lipid transfer proteins that traffic particular lipids. The concept of cellular membrane territories emphasizes the contrasting features of organelle membranes of the secretory and endolysosome networks and the essential roles of lipid-sorting pathways that maintain organelle function.


Assuntos
Retículo Endoplasmático , Lipídeos , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Transporte Biológico
16.
Methods Mol Biol ; 2557: 583-594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512239

RESUMO

With one-third of all newly synthesized proteins entering the secretory pathway, correct protein sorting is essential for cellular homeostasis. In the last three decades, researchers have developed numerous biochemical, genetic, and cell biological approaches to study protein export and sorting from the trans-Golgi network (TGN). However, accurately quantifying protein transport from one compartment to the next in the secretory pathway has been challenging. The Retention Using Selective Hooks (RUSH) system is a method that allows monitoring trafficking of a protein of interest in real time, similar to a pulse-chase experiment but without the need of radiolabeling. Accurate calculations, however, are necessary and currently lacking. Here, we combine the RUSH system with live cell imaging to quantify and calculate half lives. We exemplify our approach using a soluble secreted protein (LyzC). This system will benefit membrane trafficking researchers by adding numbers to protein export and comparing the export kinetics of different cargoes and variating conditions.


Assuntos
Via Secretória , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Transporte Proteico , Proteínas/metabolismo , Homeostase , Complexo de Golgi/metabolismo
17.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787764

RESUMO

Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.


Assuntos
Membrana Celular , Membranas Intracelulares , Esfingomielinas , Esfingosina N-Aciltransferase , Citoplasma , Homeostase , Esfingomielinas/biossíntese , Esfingosina N-Aciltransferase/metabolismo , Colesterol , Receptores ErbB/metabolismo
18.
Insects ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37103197

RESUMO

Two taxonomically similar Drosophila species, Drosophila melanogaster and Drosophila suzukii, are known to have distinct habitats: D. melanogaster is mostly found near overripe and fermented fruits, whereas D. suzukii is attracted to fresh fruits. Since chemical concentrations are typically higher in overripe and fermented fruits than in fresh fruits, D. melanogaster is hypothesized to be attracted to higher concentrations of volatiles than D. suzukii. Therefore, the chemical preferences of the two flies were compared via Y-tube olfactometer assays and electroantennogram (EAG) experiments using various concentrations of 2-phenylethanol, ethanol, and acetic acid. D. melanogaster exhibited a higher preference for high concentrations of all the chemicals than that of D. suzukii. In particular, since acetic acid is mostly produced at the late stage of fruit fermentation, the EAG signal distance to acetic acid between the two flies was higher than those to 2-phenylethanol and ethanol. This supports the hypothesis that D. melanogaster prefers fermented fruits compared to D. suzukii. When comparing virgin and mated female D. melanogaster, mated females showed a higher preference for high concentrations of chemicals than that of virgin females. In conclusion, high concentrations of volatiles are important attraction factors for mated females seeking appropriate sites for oviposition.

19.
Nanoscale Adv ; 5(3): 633-639, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756508

RESUMO

The optical, plasmonic, and imaging performance of an infra-red polarized system exceeds that of a conventional infra-red detector due to its high resolution and precision. The wire-grid polarizer has large potential for use in an infra-red polarized imaging device owing to its large polarization efficiency. In this study, we theoretically and experimentally investigate a method to improve the polarization efficiency of a wire-grid polarizer. Here, we demonstrated a high-performance wire grid polarizer with a maximum extinction ratio (ER) of 355 using a bilayer structure and dielectric material in the mid-wavelength infra-red (MWIR) region (3000 nm-5000 nm), which is a 4 times higher ER value than that of the monolayer structure. More interestingly, we were able to improve the performance of the bilayer wire-grid polarizer by devising a method to improve the surface roughness using Ar ion milling. The ER for the after-milled sample was 1255, which was markedly larger than that of the before-milled sample. The results of transmittance measurement confirmed that the improvement in the ER was due to the Fabry-Perot (F-P) phenomenon caused by constructive or destructive interference in the bilayer wire-grid structure and the enhancement of the surface smoothness. These results will help design a polarizer structure that will maximize the polarization efficiency and realize a high-performance infrared polarized imaging system.

20.
PLoS One ; 17(11): e0277455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36355804

RESUMO

Recently, pesticides have been suggested to be one of the factors responsible for the large-scale decline in honey bee populations, including colony collapse disorder. The identification of the genes that respond to pesticide exposure based on their expression is essential for understanding the xenobiotic detoxification metabolism in honey bees. For the accurate determination of target gene expression by quantitative real-time PCR, the expression stability of reference genes should be validated in honey bees exposed to various pesticides. Therefore, in this study, to select the optimal reference genes, we analyzed the amplification efficiencies of five candidate reference genes (RPS5, RPS18, GAPDH, ARF1, and RAD1a) and their expression stability values using four programs (geNorm, NormFinder, BestKeeper, and RefFinder) across samples of five body parts (head, thorax, gut, fat body, and carcass) from honey bees exposed to seven pesticides (acetamiprid, imidacloprid, flupyradifurone, fenitrothion, carbaryl, amitraz, and bifenthrin). Among these five candidate genes, a combination of RAD1a and RPS18 was suggested for target gene normalization. Subsequently, expression levels of six genes (AChE1, CYP9Q1, CYP9Q2, CYP9Q3, CAT, and SOD1) were normalized with a combination of RAD1a and RPS18 in the different body parts from honey bees exposed to pesticides. Among the six genes in the five body parts, the expression of SOD1 in the head, fat body, and carcass was significantly induced by six pesticides. In addition, among seven pesticides, flupyradifurone statistically induced expression levels of five genes in the fat body.


Assuntos
Inseticidas , Praguicidas , Abelhas/genética , Animais , Praguicidas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase-1 , Piridinas/toxicidade , Inseticidas/toxicidade , Inseticidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA