Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 192(3): 2419-2435, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36932696

RESUMO

Terpene synthases (TPSs) play pivotal roles in conferring the structural diversity of terpenoids, which are mainly emitted from flowers, whereas the genetic basis of the release of floral volatile terpenes remains largely elusive. Though quite similar in sequence, TPS allelic variants still function divergently, and how they drive floral terpene diversity in closely related species remains unknown. Here, TPSs responsible for the floral scent of wild Freesia species were characterized, and the functions of their natural allelic variants, as well as the causal amino acid residues, were investigated in depth. Besides the 8 TPSs previously reported in modern cultivars, 7 additional TPSs were functionally evaluated to contribute to the major volatiles emitted from wild Freesia species. Functional characterization of allelic natural variants demonstrated that allelic TPS2 and TPS10 variants changed the enzymatic capacity while allelic TPS6 variants drove the diversity of floral terpene products. Further residue substitution analysis revealed the minor residues determining the enzyme catalytic activity and product specificity. The clarification of TPSs in wild Freesia species reveals that allelic TPS variants evolved differently to determine the interspecific floral volatile terpenes in the genus and might be used for modern cultivar improvement.


Assuntos
Alquil e Aril Transferases , Terpenos , Terpenos/metabolismo , Filogenia , Alquil e Aril Transferases/genética
2.
Plant Cell Physiol ; 61(7): 1365-1380, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32392327

RESUMO

Anthocyanin biosynthesis is mainly controlled by MYB-bHLH-WD40 (MBW) complexes that modulate the expression of anthocyanin biosynthetic genes (ABGs). The MYB regulators involved in anthocyanin biosynthesis arose early during plant evolution and thus might function divergently in different evolutionary lineages. Although the anthocyanin-promoting R2R3-MYB regulators in eudicots have been comprehensively explored, little consensus has been reached about functional discrepancies versus conservation among MYB regulators from different plant lineages. Here, we integrated transcriptome analysis, gene expression profiles, gain-of-function experiments and transient protoplast transfection assays to functionally characterize the monocot Freesia hybrida anthocyanin MYB regulator gene FhPAP1, which showed correlations with late ABGs. FhPAP1 could activate ABGs as well as TT8-clade genes FhTT8L, AtTT8 and NtAN1 when overexpressed in Freesia, Arabidopsis and tobacco, respectively. Consistently, FhPAP1 could interact with FhTT8L and FhTTG1 to form the conserved MBW complex and shared similar target genes with its orthologs from Arabidopsis. Most prominently, FhPAP1 displayed higher transactivation capacity than its homologs in Arabidopsis and tobacco, which was instantiated in its powerful regulation on ABGs. Moreover, we found that FhPAP1 might be the selected gene during the domestication and rapid evolution of the wild Freesia species to generate intensive flower pigmentation. These results showed that while the MBW complex was highly evolutionarily conserved between tested monocot and core eudicot plants, participating MYB regulators showed functional differences in transactivation capacity according to their activation domain and played important roles in the flower coloration domestication and evolution of angiosperms.


Assuntos
Antocianinas/biossíntese , Flores/metabolismo , Iridaceae/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Iridaceae/genética , Iridaceae/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Fatores de Transcrição/genética
3.
J Exp Bot ; 71(14): 4140-4158, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275056

RESUMO

Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB-bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB-bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Alquil e Aril Transferases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
4.
Int J Antimicrob Agents ; 62(6): 107012, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865152

RESUMO

BACKGROUND: The clinical use of artemisinin-based combination therapies is threatened by increasing failure rates due to the emergence and spread of multiple drug resistance genes in most human Plasmodium strains. The aim of this study was to generate artemether-resistant (AMR) parasites from Plasmodium berghei ANKA (AMS), and determine their fitness cost. METHODS: Artemether resistance was generated by increasing drug pressure doses gradually for 9 months. Effective doses (ED50 and ED90) were determined using the 4-day suppressive test, and the indices of resistance (I) at 50% and 90% (I50 and I90) were determined using the ratio of either ED50 or ED90 of AMR to AMS, respectively. The stability of the AMR parasites was evaluated by: five drug-free passages (5DFPs), 3 months of cryopreservation (CP), and drug-free serial passages (DFSPs) for 4 months. Analysis of variance was used to compare differences in growth rates between AMR and AMS with 95% confidence intervals. RESULTS: ED50 and ED90 of AMS were 0.61 and 3.43 mg/kg/day respectively. I50 and I90 after 20 cycles of artemether selection pressure were 19.67 and 21.45, respectively; 5DFP values were 39.16 and 15.27, respectively; 3-month CP values were 29.36 and 10.79, respectively; and DFSP values were 31.34 and 12.29, respectively. The mean parasitaemia value of AMR (24.70% ± 3.60) relative to AMS (37.66% ± 3.68) at Day 7 post infection after DFSPs revealed a fitness cost of 34.41%. CONCLUSION: A moderately stable AMRP. berghei line was generated. Known and unknown mutations may be involved in modulating artemether resistance, and therefore molecular investigations are recommended.


Assuntos
Antimaláricos , Malária , Parasitos , Animais , Humanos , Artemeter/farmacologia , Artemeter/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium berghei/genética , Plasmodium falciparum , Resistência a Medicamentos
5.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039842

RESUMO

There are several causes for the great diversity in floral terpenes. The terpene products are determined by the catalytic fidelity, efficiency and plasticity of the active sites of terpene synthases (TPSs). However, the molecular mechanism of TPS in catalyzing terpene biosynthesis and its evolutionary fate in wild plant species remain largely unknown. In this study, the functionality of terpene synthases and their natural variants were assessed in two Northeastern Asia endemic columbine species and their natural hybrid. Synoptically, TPS7, TPS8, and TPS9 were highly expressed in these Aquilegia species from the Zuojia population. The in vitro and in vivo enzymatic assays revealed that TPS7 and TPS8 mainly produced (+)-limonene and ß-sesquiphellandrene, respectively, whereas TPS9 produced pinene, similar to the major components released from Aquilegia flowers. Multiple sequence alignment of Aquilegia TPS7 and TPS8 in the Zuojia population revealed amino acid polymorphisms. Domain swapping and amino acid substitution assays demonstrated that 413A, 503I and 529D had impacts on TPS7 catalytic activity, whereas 420G, 538F and 545 L affected the ratio of ß-sesquiphellandrene to ß-bisabolene in TPS8. Moreover, these key polymorphic amino acid residues were found in Aquilegia species from the Changbai Mountain population. Interestingly, amino acid polymorphisms in TPSs were present in individuals with low expression levels, and nonsynonymous mutations could impact the catalytic activity or product specificity of these genes. The results of this study will shed new light on the function and evolution of TPS genes in wild plant species and are beneficial to the modification of plant fragrances.

6.
Plant Physiol Biochem ; 154: 439-450, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32912484

RESUMO

Safranal and crocin, commonly derived from the oxidative cleavage reaction of zeaxanthin in plants, are two kinds of apocarotenoids with versatile functions, which were only found in limited number of plant species. In this study, both metabolites were detected and varied concomitantly with the expression of carotenoid cleavage dioxygenase (CCD) genes in Freesia hybrida, Red River® and Ambiance cultivars. The newly isolated CCD, denoted here as FhCCD2, was phylogenetically clustered with other reported saffron CCD2s. Besides, ten introns were also observed in the genomic DNA sequence of FhCCD2 and the presence of N-terminal transporter peptide suggested its plastidial sub-localization. Biochemical analysis showed that the FhCCD2 cleaved zeaxanthin at the 7, 8 and 7', 8' double bonds to generate intermediates prerequisite for the biosynthesis of safranal and crocin. Further, gene transient expression analysis showed that the promoter of FhCCD2 was functional in Ambiance as well as Red River® cultivars, even with slight variation in their promoter sequence. At present, CCD2 proteins have only been found in Freesia and Crocus genus of Iridaceae family. Phylogenetic and intron position analysis infer that CCD2 perhaps emerged after the intron loss during evolutionary process of CCD1 or their shared ancestry.


Assuntos
Carotenoides/análise , Cicloexenos/análise , Dioxigenases , Iridaceae , Terpenos/análise , Clonagem Molecular , Dioxigenases/genética , Iridaceae/enzimologia , Iridaceae/genética , Filogenia , Proteínas de Plantas/genética
7.
Commun Biol ; 3(1): 396, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719499

RESUMO

Floral anthocyanin has multiple ecological and economic values, its biosynthesis largely depends on the conserved MYB-bHLH-WD40 (MBW) activation complex and MYB repressors hierarchically with the MBW complex. In contrast to eudicots, the MBW regulatory network model has not been addressed in monocots because of the lack of a suitable system, as grass plants exhibit monotonous floral pigmentation patterns. Presently, the MBW regulatory network was investigated in a non-grass monocot plant, Freesia hybrida. FhMYB27 and FhMYBx with different functional manners were confirmed to be anthocyanin related R2R3 and R3 MYB repressors, respectively. Particularly, FhMYBx could obstruct the formation of positive MBW complex by titrating bHLH proteins, whereas FhMYB27 mainly defected the activator complex into suppressor via its repression domains in C-terminus. Furthermore, the hierarchical and feedback regulatory loop was verified, indicating the synergistic and sophisticated regulatory network underlying Freesia anthocyanin biosynthesis was quite similar to that reported in eudicot plants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Iridaceae/genética , Pigmentação/genética , Fatores Genéricos de Transcrição/genética , Repetições WD40/genética , Antocianinas/biossíntese , Antocianinas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Iridaceae/crescimento & desenvolvimento , Substâncias Macromoleculares/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA