Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2107942119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881809

RESUMO

The study of social dominance interactions between animals offers a window onto the decision-making involved in establishing dominance hierarchies and an opportunity to examine changes in social behavior observed in certain neurogenetic disorders. Competitive social interactions, such as in the widely used tube test, reflect this decision-making. Previous studies have focused on the different patterns of behavior seen in the dominant and submissive animal, neural correlates of effortful behavior believed to mediate the outcome of such encounters, and interbrain correlations of neural activity. Using a rigorous mutual information criterion, we now report that neural responses recorded with endoscopic calcium imaging in the prelimbic zone of the medial prefrontal cortex show unique correlations to specific dominance-related behaviors. Interanimal analyses revealed cell/behavior correlations that are primarily with an animal's own behavior or with the other animal's behavior, or the coincident behavior of both animals (such as pushing by one and resisting by the other). The comparison of unique and coincident cells helps to disentangle cell firing that reflects an animal's own or the other's specific behavior from situations reflecting conjoint action. These correlates point to a more cognitive rather than a solely behavioral dimension of social interactions that needs to be considered in the design of neurobiological studies of social behavior. These could prove useful in studies of disorders affecting social recognition and social engagement, and the treatment of disorders of social interaction.


Assuntos
Cálcio , Córtex Pré-Frontal , Predomínio Social , Interação Social , Animais , Cálcio/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia
2.
J Neurosci ; 43(11): 2002-2020, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36759195

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.


Assuntos
Espasmos Infantis , Vesículas Sinápticas , Animais , Masculino , Ratos , Quinases Ciclina-Dependentes/metabolismo , Endocitose/fisiologia , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Vesículas Sinápticas/metabolismo
3.
J Neurochem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978454

RESUMO

The presynapse performs an essential role in brain communication via the activity-dependent release of neurotransmitters. However, the sequence of events through which a presynapse acquires functionality is relatively poorly understood, which is surprising, since mutations in genes essential for its operation are heavily implicated in neurodevelopmental disorders. We addressed this gap in knowledge by determining the developmental trajectory of synaptic vesicle (SV) recycling pathways in primary cultures of rat hippocampal neurons. Exploiting a series of optical and morphological assays, we revealed that the majority of nerve terminals displayed activity-dependent calcium influx from 3 days in vitro (DIV), immediately followed by functional evoked exocytosis and endocytosis, although the number of responsive nerve terminals continued to increase until the second week in vitro. However, the most intriguing discovery was that activity-dependent bulk endocytosis (ADBE) was only observed from DIV 14 onwards. Importantly, optimal ADBE recruitment was delayed until DIV 21 in Fmr1 knockout neurons, which model Fragile X Syndrome (FXS). This implicates the delayed recruitment of ADBE as a potential contributing factor in the development of circuit dysfunction in FXS, and potentially other neurodevelopmental disorders.

4.
J Neurosci ; 42(8): 1618-1628, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34996816

RESUMO

Synaptic vesicle (SV) recycling is essential for the maintenance of neurotransmission, with a number of neurodevelopmental disorders linked to defects in this process. Fragile X syndrome (FXS) results from a loss of fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. Hyperexcitability of neuronal circuits is a key feature of FXS, therefore we investigated whether SV recycling was affected by the absence of FMRP during increased neuronal activity. We revealed that primary neuronal cultures from male Fmr1 knock-out (KO) rats display a specific defect in activity-dependent bulk endocytosis (ADBE). ADBE is dominant during intense neuronal activity, and this defect resulted in an inability of Fmr1 KO neurons to sustain SV recycling during trains of high-frequency stimulation. Using a molecular replacement strategy, we also revealed that a human FMRP mutant that cannot bind BK channels failed to correct ADBE dysfunction in KO neurons, however this dysfunction was corrected by BK channel agonists. Therefore, FMRP performs a key role in sustaining neurotransmitter release via selective control of ADBE, suggesting intervention via this endocytosis mode may correct the hyperexcitability observed in FXS.SIGNIFICANCE STATEMENT Loss of fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), however whether its loss has a direct role in neurotransmitter release remains a matter of debate. We demonstrate that neurons lacking FMRP display a specific defect in a mechanism that sustains neurotransmitter release during intense neuronal firing, called activity-dependent bulk endocytosis (ADBE). This discovery provides key insights into mechanisms of brain communication that occur because of loss of FMRP function. Importantly it also reveals ADBE as a potential therapeutic target to correct the circuit hyperexcitability observed in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Endocitose , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Neurotransmissores/genética , Neurotransmissores/metabolismo , Ratos
5.
BMC Neurosci ; 24(1): 5, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658491

RESUMO

BACKGROUND: Autism spectrum condition or 'autism' is associated with numerous genetic risk factors including the polygenic 16p11.2 microdeletion. The balance between excitatory and inhibitory neurons in the cerebral cortex is hypothesised to be critical for the aetiology of autism making improved understanding of how risk factors impact on the development of these cells an important area of research. In the current study we aim to combine bioinformatics analysis of human foetal cerebral cortex gene expression data with anatomical and electrophysiological analysis of a 16p11.2+/- rat model to investigate how genetic risk factors impact on inhibitory neuron development. METHODS: We performed bioinformatics analysis of single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal cortex and anatomical and electrophysiological analysis of 16p11.2+/- rat cerebral cortex and hippocampus at post-natal day (P) 21. RESULTS: We identified a subset of human interneurons (INs) first appearing at GW23 with enriched expression of a large fraction of risk factor transcripts including those expressed from the 16p11.2 locus. This suggests the hypothesis that these foetal INs are vulnerable to mutations causing autism. We investigated this in a rat model of the 16p11.2 microdeletion. We found no change in the numbers or position of either excitatory or inhibitory neurons in the somatosensory cortex or CA1 of 16p11.2+/- rats but found that CA1 Sst INs were hyperexcitable with an enlarged axon initial segment, which was not the case for CA1 pyramidal cells. LIMITATIONS: The human foetal gene expression data was acquired from cerebral cortex between gestational week (GW) 8 to 26. We cannot draw inferences about potential vulnerabilities to genetic autism risk factors for cells not present in the developing cerebral cortex at these stages. The analysis 16p11.2+/- rat phenotypes reported in the current study was restricted to 3-week old (P21) animals around the time of weaning and to a single interneuron cell-type while in human 16p11.2 microdeletion carriers symptoms likely involve multiple cell types and manifest in the first few years of life and on into adulthood. CONCLUSIONS: We have identified developing interneurons in human foetal cerebral cortex as potentially vulnerable to monogenic autism risk factors and the 16p11.2 microdeletion and report interneuron phenotypes in post-natal 16p11.2+/- rats.


Assuntos
Transtorno Autístico , Interneurônios , Humanos , Ratos , Animais , Transtorno Autístico/genética , Neurônios , Córtex Cerebral , Fatores de Risco
6.
Brain ; 144(5): 1576-1589, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33769452

RESUMO

Seizures can emerge from multiple or large foci in temporal lobe epilepsy, complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons, which provide extensive projections throughout the hippocampus, is used to control seizures. We utilized the chronic intrahippocampal kainate mouse model of temporal lobe epilepsy, which results in spontaneous seizures and as is often the case in human patients, presents with hippocampal sclerosis. Medial septal GABAergic neuron populations were immunohistochemically labelled and were not reduced in epileptic conditions. Genetic labelling with mRuby of medial septal GABAergic neuron synaptic puncta and imaging across the rostral to caudal extent of the hippocampus, also indicated an unchanged number of putative synapses in epilepsy. Furthermore, optogenetic stimulation of medial septal GABAergic neurons consistently modulated oscillations across multiple hippocampal locations in control and epileptic conditions. Finally, wireless optogenetic stimulation of medial septal GABAergic neurons, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose medial septal GABAergic neurons as a novel target for optogenetic control of seizures in temporal lobe epilepsy.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Optogenética , Convulsões/fisiopatologia , Núcleos Septais/fisiopatologia , Animais , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Camundongos
7.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232696

RESUMO

The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.


Assuntos
Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Receptores de N-Metil-D-Aspartato , Animais , Modelos Animais de Doenças , Crescimento e Desenvolvimento/genética , Crescimento e Desenvolvimento/fisiologia , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo , Sinapses/fisiologia
8.
Eur J Neurosci ; 54(10): 7733-7748, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34672048

RESUMO

Advances in the understanding of developmental brain disorders such as autism spectrum disorders (ASDs) are being achieved through human neurogenetics such as, for example, identifying de novo mutations in SYNGAP1 as one relatively common cause of ASD. A recently developed rat line lacking the calcium/lipid binding (C2) and GTPase activation protein (GAP) domain may further help uncover the neurobiological basis of deficits in children with ASD. This study focused on social dominance in the tube test using Syngap+/Δ-GAP (rats heterozygous for the C2/GAP domain deletion) as alterations in social behaviour are a key facet of the human phenotype. Male animals of this line living together formed a stable intra-cage hierarchy, but they were submissive when living with wild-type (WT) cage-mates, thereby modelling the social withdrawal seen in ASD. The study includes a detailed analysis of specific behaviours expressed in social interactions by WT and mutant animals, including the observation that when the Syngap+/Δ-GAP mutants that had been living together had separate dominance encounters with WT animals from other cages, the two higher ranking Syngap+/Δ-GAP rats remained dominant whereas the two lower ranking mutants were still submissive. Although only observed in a small subset of animals, these findings support earlier observations with a rat model of Fragile X, indicating that their experience of winning or losing dominance encounters has a lasting influence on subsequent encounters with others. Our results highlight and model that even with single-gene mutations, dominance phenotypes reflect an interaction between genotypic and environmental factors.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Genótipo , Masculino , Fenótipo , Ratos , Comportamento Social , Predomínio Social
9.
Acta Neuropathol ; 141(3): 415-429, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33449171

RESUMO

In multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system, neurodegeneration is detected early in the disease course and is associated with the long-term disability of patients. Neurodegeneration is linked to both inflammation and demyelination, but its exact cause remains unknown. This gap in knowledge contributes to the current lack of treatments for the neurodegenerative phase of MS. Here we ask if neurodegeneration in MS affects specific neuronal components and if it is the result of demyelination. Neuropathological examination of secondary progressive MS motor cortices revealed a selective vulnerability of inhibitory interneurons in MS. The generation of a rodent model of focal subpial cortical demyelination reproduces this selective neurodegeneration providing a new preclinical model for the study of neuroprotective treatments.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Degeneração Neural/patologia , Neurônios/patologia , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
10.
Am J Dermatopathol ; 43(11): 801-810, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33958512

RESUMO

ABSTRACT: Seborrheic keratosis with sebaceous differentiation (SKSD) can sometimes raise uncertainty, confuse with other even malignant entities, and lead to overestimation of this harmless variant. Retrospective analysis of the cases diagnosed as SKSD and a search of the pertaining literature were conducted. Eight cases of SKSD were found. Histologically, these lesions show a flat to plate-like outgrowth of basaloid cells with solitary or clustered sebocytes at the bottom of the rete ridges and variable sebaceous ducts with luminal cuticula. The lesions differed in the outgrowth subpattern: flat/macular, acanthotic, or reticulated. No association was found with Muir-Torre syndrome, and no malignant transformation was seen in these lesions. Literature search revealed confusingly designated lesions that simply represented SKSD. SKSD can show several growth patterns as classic SK. This entity is either underreported or even underrecognized. This entity is benign; however, according to the literature, exclusion of an associating Muir-Torre syndrome should be warranted. The published literature about this lesion is confusing and inconsistent. We suggest the avoidance of confusing terminology and particularly the terminus epithelioma for such lesions.


Assuntos
Diferenciação Celular , Ceratose Seborreica/patologia , Síndrome de Muir-Torre/diagnóstico , Glândulas Sebáceas/patologia , Adulto , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Ceratose Seborreica/diagnóstico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
11.
Neurobiol Dis ; 146: 105118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031903

RESUMO

Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.


Assuntos
Córtex Auditivo/fisiopatologia , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Estimulação Acústica/métodos , Animais , Ansiedade/fisiopatologia , Córtex Auditivo/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Comportamento Exploratório/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ratos
12.
Brain ; 142(1): 80-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544257

RESUMO

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto Jovem
13.
Hum Mol Genet ; 25(18): 4052-4061, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466188

RESUMO

Genetic mutations known to cause intellectual disabilities (IDs) are concentrated in specific sets of genes including both those encoding synaptic proteins and those expressed during early development. We have characterized the effect of genetic deletion of Dlg3, an ID-related gene encoding the synaptic NMDA-receptor interacting protein synapse-associated protein 102 (SAP102), on development of the mouse somatosensory cortex. SAP102 is the main representative of the PSD-95 family of postsynaptic MAGUK proteins during early development and is proposed to play a role in stabilizing receptors at immature synapses. Genetic deletion of SAP102 caused a reduction in the total number of thalamocortical (TC) axons innervating the somatosensory cortex, but did not affect the segregation of barrels. On a synaptic level SAP102 knockout mice display a transient speeding of NMDA receptor kinetics during the critical period for TC plasticity, despite no reduction in GluN2B-mediated component of synaptic transmission. These data indicated an interesting dissociation between receptor kinetics and NMDA subunit expression. Following the critical period NMDA receptor function was unaffected by loss of SAP102 but there was a reduction in the divergence of TC connectivity. These data suggest that changes in synaptic function early in development caused by mutations in SAP102 result in changes in network connectivity later in life.


Assuntos
Desenvolvimento Embrionário/genética , Guanilato Quinases/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Humanos , Deficiência Intelectual/fisiopatologia , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Deleção de Sequência , Córtex Somatossensorial/patologia , Transmissão Sináptica/genética
14.
Mol Ecol ; 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989297

RESUMO

An important challenge for conservation science is to detect declines in intraspecific diversity so that management action can be guided towards populations or species at risk. The lifespan of Australian lungfish (Neoceratodus forsteri) exceeds 80 years, and human impacts on breeding habitat over the last half century may have impeded recruitment, leaving populations dominated by old postreproductive individuals, potentially resulting in a small and declining breeding population. Here, we conduct a "single-sample" evaluation of genetic erosion within contemporary populations of the Australian lungfish. Genetic erosion is a temporal decline in intraspecific diversity due to factors such as reduced population size and inbreeding. We examined whether young individuals showed signs of reduced genetic diversity and/or inbreeding using a novel bomb radiocarbon dating method to age lungfish nonlethally, based on 14 C ratios of scales. A total of 15,201 single nucleotide polymorphic (SNP) loci were genotyped in 92 individuals ranging in age from 2 to 77 years old. Standardized individual heterozygosity and individual inbreeding coefficients varied widely within and between riverine populations, but neither was associated with age, so perceived problems with recruitment have not translated into genetic erosion that could be considered a proximate threat to lungfish populations. Conservation concern has surrounded Australian lungfish for over a century. However, our results suggest that long-lived threatened species can maintain stable levels of intraspecific variability when sufficient reproductive opportunities exist over the course of a long lifespan.

15.
Histopathology ; 72(4): 679-684, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29023914

RESUMO

AIMS: Spindle cell differentiation is not an uncommon finding in common acquired naevi, and may represent a form of neurotisation with Schwannian differentiation of melanocytes. Perineurial differentiation in this context appears to be very rare, and is only poorly documented in the literature. We therefore aimed to study this rare form of neurotisation in melanocytic naevi more comprehensively. METHODS AND RESULTS: We have identified six melanocytic tumours showing spindle cell morphology and perineurial differentiation from routine and referral material. Clinical data and follow-up were obtained, and the histological and immunohistochemical features were analysed. The tumours affected middle-aged adults (median, 48 years; range, 26-74 years), with a wide anatomical distribution and benign follow-up (median, 13 months; range, 6-48 months). All tumours were nodular and circumscribed but asymmetrical, with extension into the deep dermis and superficial subcutis. A characteristic finding was a biphasic growth pattern with a lentiginous compound naevus in the superficial aspect and abrupt transition to a prominent nodular spindle cell proliferation in the deeper reaches. Spindle cells were bland and uniform, and arranged singly and in short fascicles in a loose fibromyxoid stroma. In areas, a whorled arrangement of slender spindle cells with wavy nuclei was seen. Distinctive intratumoral hypocellular nodules and peripheral lymphoid aggregates were additional features. By immunohistochemistry, the spindle cells were mainly S100-positive melanocytes. In areas, S100-negative/epithelial membrane antigen-positive spindle cells showing coexpression of Glut-1 and claudin-1 were closely admixed. CONCLUSION: This perineurial differentiation probably represents a rare and unusual form of neurotisation. The tumours are benign but may be mistaken for desmoplastic melanoma. Awareness of and careful attention to the clinicopathological and immunohistochemical features allow reliable separation.


Assuntos
Melanoma/patologia , Nevo Pigmentado/patologia , Neoplasias Cutâneas/patologia , Adulto , Idoso , Biomarcadores Tumorais/análise , Diferenciação Celular , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Melanoma/diagnóstico , Pessoa de Meia-Idade , Nevo Pigmentado/diagnóstico , Neoplasias Cutâneas/diagnóstico , Melanoma Maligno Cutâneo
16.
J Physiol ; 595(6): 2147-2160, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28083896

RESUMO

KEY POINTS: Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. ABSTRACT: Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses with CA3 pyramidal cells via large mossy-fibre boutons, but rather to all synapses formed by dentate granule cells. Therefore, presynaptic mitochondrial function is critical for the short-term dynamics of synapse function, which may contribute to the cognitive deficits observed in pathological mitochondrial dysfunction.


Assuntos
Alquil e Aril Transferases/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Proteínas de Membrana/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Alquil e Aril Transferases/genética , Animais , Proteínas de Membrana/genética , Camundongos Transgênicos , Transmissão Sináptica
17.
Hum Mol Genet ; 24(21): 5977-84, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26243794

RESUMO

Recent advances in techniques for manipulating genomes have allowed the generation of transgenic animals other than mice. These new models enable cross-mammalian comparison of neurological disease from core cellular pathophysiology to circuit and behavioural endophenotypes. Moreover they will enable us to directly test whether common cellular dysfunction or behavioural outcomes of a genetic mutation are more conserved across species. Using a new rat model of Fragile X Syndrome, we report that Fmr1 knockout (KO) rats exhibit elevated basal protein synthesis and an increase in mGluR-dependent long-term depression in CA1 of the hippocampus that is independent of new protein synthesis. These defects in plasticity are accompanied by an increase in dendritic spine density selectively in apical dendrites and subtle changes in dendritic spine morphology of CA1 pyramidal neurons. Behaviourally, Fmr1 KO rats show deficits in hippocampal-dependent, but not hippocampal-independent, forms of associative recognition memory indicating that the loss of fragile X mental retardation protein (FMRP) causes defects in episodic-like memory. In contrast to previous reports from mice, Fmr1 KO rats show no deficits in spatial reference memory reversal learning. One-trial spatial learning in a delayed matching to place water maze task was also not affected by the loss of FMRP in rats. This is the first evidence for conservation across mammalian species of cellular and physiological hippocampal phenotypes associated with the loss of FMRP. Furthermore, while key cellular phenotypes are conserved they manifest in distinct behavioural dysfunction. Finally, our data reveal novel information about the selective role of FMRP in hippocampus-dependent associative memory.


Assuntos
Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/fisiopatologia , Hipocampo/fisiopatologia , Animais , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Técnicas de Inativação de Genes , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
18.
Stem Cells ; 34(4): 1040-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26763608

RESUMO

Rodent-based studies have shown that the membrane properties of oligodendrocytes play prominent roles in their physiology and shift markedly during their maturation from the oligodendrocyte precursor cell (OPC) stage. However, the conservation of these properties and maturation processes in human oligodendrocytes remains unknown, despite their dysfunction being implicated in human neurodegenerative diseases such as multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Here, we have defined the membrane properties of human oligodendrocytes derived from pluripotent stem cells as they mature from the OPC stage, and have identified strong conservation of maturation-specific physiological characteristics reported in rodent systems. We find that as human oligodendrocytes develop and express maturation markers, they exhibit a progressive decrease in voltage-gated sodium and potassium channels and a loss of tetrodotoxin-sensitive spiking activity. Concomitant with this is an increase in inwardly rectifying potassium channel activity, as well as a characteristic switch in AMPA receptor composition. All these steps mirror the developmental trajectory observed in rodent systems. Oligodendrocytes derived from mutant C9ORF72-carryng ALS patient induced pluripotent stem cells did not exhibit impairment to maturation and maintain viability with respect to control lines despite the presence of RNA foci, suggesting that maturation defects may not be a primary feature of this mutation. Thus, we have established that the development of human oligodendroglia membrane properties closely resemble those found in rodent cells and have generated a platform to enable the impact of human neurodegenerative disease-causing mutations on oligodendrocyte maturation to be studied.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Diferenciação Celular/genética , Esclerose Múltipla/fisiopatologia , Oligodendroglia/fisiologia , Células-Tronco Pluripotentes/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Fenômenos Eletrofisiológicos , Feminino , Humanos , Masculino , Esclerose Múltipla/genética , Mutação , Neurogênese/genética , Neurogênese/fisiologia , Oligodendroglia/patologia , Células-Tronco Pluripotentes/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Sódio Disparados por Voltagem/genética
19.
Epilepsia ; 58(4): 597-607, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28195311

RESUMO

OBJECTIVE: Absence seizures in childhood absence epilepsy are initiated in the thalamocortical (TC) system. We investigated if these seizures result from altered development of the TC system before the appearance of seizures in mice containing a point mutation in γ-aminobutyric acid A (GABAA ) receptor γ2 subunits linked to childhood absence epilepsy (R43Q). Findings from conditional mutant mice indicate that expression of normal γ2 subunits during preseizure ages protect from later seizures. This indicates that altered development in the presence of the R43Q mutation is a key contributor to the R43Q phenotype. We sought to identify the cellular processes affected by the R43Q mutation during these preseizure ages. METHODS: We examined landmarks of synaptic development at the end of the critical period for somatosensory TC plasticity using electrophysiologic recordings in TC brain slices from wild-type mice and R43Q mice. RESULTS: We found that the level of TC connectivity to layer 4 (L4) principal cells and the properties of TC synapses were unaltered in R43Q mice. Furthermore, we show that, although TC feedforward inhibition and the total level of GABAergic inhibition were normal, there was a reduction in the local connectivity to cortical interneurons. This reduction leads to altered inhibition during bursts of cortical activity. SIGNIFICANCE: This altered inhibition demonstrates that alterations in cortical circuitry precede the onset of seizures by more than a week.


Assuntos
Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/patologia , Interneurônios/fisiologia , Mutação Puntual/genética , Receptores de GABA-A/genética , Córtex Somatossensorial/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Arginina/genética , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
20.
J Neurosci ; 35(45): 15073-81, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558778

RESUMO

Previous studies have hypothesized that diverse genetic causes of intellectual disability (ID) and autism spectrum disorders (ASDs) converge on common cellular pathways. Testing this hypothesis requires detailed phenotypic analyses of animal models with genetic mutations that accurately reflect those seen in the human condition (i.e., have structural validity) and which produce phenotypes that mirror ID/ASDs (i.e., have face validity). We show that SynGAP haploinsufficiency, which causes ID with co-occurring ASD in humans, mimics and occludes the synaptic pathophysiology associated with deletion of the Fmr1 gene. Syngap(+/-) and Fmr1(-/y) mice show increases in basal protein synthesis and metabotropic glutamate receptor (mGluR)-dependent long-term depression that, unlike in their wild-type controls, is independent of new protein synthesis. Basal levels of phosphorylated ERK1/2 are also elevated in Syngap(+/-) hippocampal slices. Super-resolution microscopy reveals that Syngap(+/-) and Fmr1(-/y) mice show nanoscale alterations in dendritic spine morphology that predict an increase in biochemical compartmentalization. Finally, increased basal protein synthesis is rescued by negative regulators of the mGlu subtype 5 receptor and the Ras-ERK1/2 pathway, indicating that therapeutic interventions for fragile X syndrome may benefit patients with SYNGAP1 haploinsufficiency. SIGNIFICANCE STATEMENT: As the genetics of intellectual disability (ID) and autism spectrum disorders (ASDs) are unraveled, a key issue is whether genetically divergent forms of these disorders converge on common biochemical/cellular pathways and hence may be amenable to common therapeutic interventions. This study compares the pathophysiology associated with the loss of fragile X mental retardation protein (FMRP) and haploinsufficiency of synaptic GTPase-activating protein (SynGAP), two prevalent monogenic forms of ID. We show that Syngap(+/-) mice phenocopy Fmr1(-/y) mice in the alterations in mGluR-dependent long-term depression, basal protein synthesis, and dendritic spine morphology. Deficits in basal protein synthesis can be rescued by pharmacological interventions that reduce the mGlu5 receptor-ERK1/2 signaling pathway, which also rescues the same deficit in Fmr1(-/y) mice. Our findings support the hypothesis that phenotypes associated with genetically diverse forms of ID/ASDs result from alterations in common cellular/biochemical pathways.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/biossíntese , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Proteínas Ativadoras de ras GTPase/biossíntese , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA