Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160573

RESUMO

In taste buds, Type I cells represent the majority of cells (50-60%) and primarily have a glial-like function in taste buds. However, recent studies suggest that they have additional sensory and signaling functions including amiloride-sensitive salt transduction, oxytocin modulation of taste, and substance P mediated GABA release. Nonetheless, the overall function of Type I cells in transduction and signaling remains unclear, primarily because of the lack of a reliable reporter for this cell type. GAD65 expression is specific to Type I taste cells and GAD65 has been used as a Cre driver to study Type I cells in salt taste transduction. To test the specificity of transgene-driven expression, we crossed GAD65Cre mice with floxed tdTomato and Channelrhodopsin (ChR2) lines and examined the progeny with immunochemistry, chorda tympani recording, and calcium imaging. We report that while many tdTomato+ taste cells express NTPDase2, a specific marker of Type I cells, we see some expression of tdTomato in both Gustducin and SNAP25-positive taste cells. We also see ChR2 in cells just outside the fungiform taste buds. Chorda tympani recordings in the GAD65Cre/ChR2 mice show large responses to blue light. Furthermore, several isolated tdTomato-positive taste cells responded to KCl depolarization with increases in intracellular calcium, indicating the presence of voltage-gated calcium channels. Taken together, these data suggest that GAD65Cre mice drive expression in multiple taste cell types and thus cannot be considered a reliable reporter of Type I cell function.


Assuntos
Papilas Gustativas , Paladar , Amilorida , Animais , Channelrhodopsins , Nervo da Corda do Tímpano , Camundongos
2.
Am J Physiol Endocrinol Metab ; 319(2): E276-E290, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574112

RESUMO

Intake of sugars, especially the fructose component, is strongly associated with the development of obesity and metabolic syndrome, but the relative role of taste versus metabolism in driving preference, intake, and metabolic outcome is not fully understood. We aimed to evaluate the preference for sweet substances and the tendency to develop metabolic syndrome in response to these sugars in mice lacking functional taste signaling [P2X2 (P2X purinoreceptor 2)/P2X3 (P2X purinoreceptor 3) double knockout mice (DKO)] and mice unable to metabolize fructose (fructokinase knockout mice). Of interest, our data indicate that despite their inability to taste sweetness, P2X2/3 DKO mice still prefer caloric sugars (including fructose and glucose) to water in long-term testing, although with diminished preference compared with control mice. Despite reduced intake of caloric sugars by P2X2/3 DKO animals, the DKO mice still show increased levels of the sugar-dependent hormone FGF21 (fibroblast growth factor 21) in plasma and liver. Despite lower sugar intake, taste-blind mice develop severe features of metabolic syndrome due to reduced sensitivity to leptin, reduced ability to mobilize and oxidize fats, and increased hepatic de novo lipogenesis. In contrast to P2X2/3 DKO and wild-type mice, fructokinase knockout mice, which cannot metabolize fructose and are protected against fructose-induced metabolic syndrome, demonstrate reduced preference and intake for all fructose-containing sugars tested but not for glucose or artificial sweeteners. Based on these observations, we conclude that sugar can induce metabolic syndrome in mice independently of its sweet properties. Furthermore, our data demonstrate that the metabolism of fructose is necessary for sugar to drive intake and preference in mice.


Assuntos
Sacarose Alimentar/efeitos adversos , Síndrome Metabólica/etiologia , Obesidade/etiologia , Paladar/fisiologia , Animais , Sacarose Alimentar/administração & dosagem , Preferências Alimentares/fisiologia , Frutose/administração & dosagem , Frutose/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Purinérgicos P2X2/deficiência , Receptores Purinérgicos P2X2/fisiologia , Receptores Purinérgicos P2X3/deficiência , Receptores Purinérgicos P2X3/fisiologia
3.
Chem Senses ; 45(4): 233-234, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32099995

RESUMO

Among the 5 taste qualities, salt is the least understood. The receptors, their expression pattern in taste cells, and the transduction mechanisms for salt taste are still unclear. Previous studies have suggested that low concentrations of NaCl are detected by the amiloride-sensitive epithelial Na+ channel (ENaC), which in other systems requires assembly of 3 homologous subunits (α, ß, and γ) to form a functional channel. However, a new study from Lossow and colleagues, published in this issue of Chemical Senses, challenges that hypothesis by examining expression levels of the 3 ENaC subunits in individual taste cells using gene-targeted mice in combination with immunohistochemistry and in situ hybridization. Results show a lack of colocalization of ENaC subunits in taste cells as well as expression of subunits in taste cells that show no amiloride sensitivity. These new results question the molecular identity of the amiloride-sensitive Na+ conductance in taste cells.


Assuntos
Amilorida/metabolismo , Canais Epiteliais de Sódio/metabolismo , Papilas Gustativas/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização In Situ , Conformação Proteica , Paladar/fisiologia , Papilas Gustativas/citologia
4.
Chem Senses ; 45(7): 533-539, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32582939

RESUMO

Studies have suggested that communication between taste cells shapes the gustatory signal before transmission to the brain. To further explore the possibility of intragemmal signal modulation, we adopted an optogenetic approach to stimulate sour-sensitive (Type III) taste cells using mice expressing Cre recombinase under a specific Type III cell promoter, Pkd2l1 (polycystic kidney disease-2-like 1), crossed with mice expressing Cre-dependent channelrhodopsin (ChR2). The application of blue light onto the tongue allowed for the specific stimulation of Type III cells and circumvented the nonspecific effects of chemical stimulation. To understand whether taste modality information is preprocessed in the taste bud before transmission to the sensory nerves, we recorded chorda tympani nerve activity during light and/or chemical tastant application to the tongue. To assess intragemmal modulation, we compared nerve responses to various tastants with or without concurrent light-induced activation of the Type III cells. Our results show that light significantly decreased taste responses to sweet, bitter, salty, and acidic stimuli. On the contrary, the light response was not consistently affected by sweet or bitter stimuli, suggesting that activation of Type II cells does not affect nerve responses to stimuli that activate Type III cells.


Assuntos
Optogenética , Paladar/fisiologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Channelrhodopsins/genética , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/fisiologia , Nervo da Corda do Tímpano/efeitos da radiação , Luz , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Quinina/química , Quinina/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Estimulação Química , Sacarose/química , Sacarose/farmacologia
5.
Chem Senses ; 44(7): 483-495, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31231752

RESUMO

Some bitter taste receptors (TAS2R gene products) are expressed in the human sinonasal cavity and may function to detect airborne irritants. The expression of all 25 human bitter taste receptors and their location within the upper airway is not yet clear. The aim of this study is to characterize the presence and distribution of TAS2R transcripts and solitary chemosensory cells (SCCs) in different locations of the human sinonasal cavity. Biopsies were obtained from human subjects at up to 4 different sinonasal anatomic sites. PCR, microarray, and qRT-PCR were used to examine gene transcript expression. The 25 human bitter taste receptors as well as the sweet/umami receptor subunit, TAS1R3, and canonical taste signaling effectors are expressed in sinonasal tissue. All 25 human bitter taste receptors are expressed in the human upper airway, and expression of these gene products was higher in the ethmoid sinus than nasal cavity locations. Fluorescent in situ hybridization demonstrates that epithelial TRPM5 and TAS2R38 are expressed in a rare cell population compared with multiciliated cells, and at times, consistent with SCC morphology. Secondary analysis of published human sinus single-cell RNAseq data did not uncover TAS2R or canonical taste transduction transcripts in multiciliated cells. These findings indicate that the sinus has higher expression of SCC markers than the nasal cavity in chronic rhinosinusitis patients, comprising a rare cell type. Biopsies obtained from the ethmoid sinus may serve as the best location for study of human upper airway taste receptors and SCCs.


Assuntos
Células Quimiorreceptoras/metabolismo , Cavidade Nasal/metabolismo , Receptores Acoplados a Proteínas G/genética , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(2): E229-38, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26627720

RESUMO

Sour taste is detected by a subset of taste cells on the tongue and palate epithelium that respond to acids with trains of action potentials. Entry of protons through a Zn(2+)-sensitive proton conductance that is specific to sour taste cells has been shown to be the initial event in sour taste transduction. Whether this conductance acts in concert with other channels sensitive to changes in intracellular pH, however, is not known. Here, we show that intracellular acidification generates excitatory responses in sour taste cells, which can be attributed to block of a resting K(+) current. We identify KIR2.1 as the acid-sensitive K(+) channel in sour taste cells using pharmacological and RNA expression profiling and confirm its contribution to sour taste with tissue-specific knockout of the Kcnj2 gene. Surprisingly, acid sensitivity is not conferred on sour taste cells by the specific expression of Kir2.1, but by the relatively small magnitude of the current, which makes the cells exquisitely sensitive to changes in intracellular pH. Consistent with a role of the K(+) current in amplifying the sensory response, entry of protons through the Zn(2+)-sensitive conductance produces a transient block of the KIR2.1 current. The identification in sour taste cells of an acid-sensitive K(+) channel suggests a mechanism for amplification of sour taste and may explain why weak acids that produce intracellular acidification, such as acetic acid, taste more sour than strong acids.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Prótons , Transdução de Sinais , Paladar/fisiologia , Ácidos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Integrases/metabolismo , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Paladar/efeitos dos fármacos , Papilas Gustativas/citologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/metabolismo , Zinco/farmacologia
7.
Chem Senses ; 42(9): 759-767, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28968659

RESUMO

Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields.


Assuntos
Papilas Gustativas/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Serotonina/genética , Serotonina/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Paladar/fisiologia , Papilas Gustativas/citologia
9.
J Neurosci ; 35(48): 15984-95, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631478

RESUMO

Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 µM 5-HT and this response is blocked by 1 µM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 µM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.


Assuntos
Receptores 5-HT3 de Serotonina/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Papilas Gustativas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/farmacologia , Adjuvantes Anestésicos/farmacologia , Animais , Feminino , Gânglio Geniculado/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pentobarbital/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Receptores 5-HT3 de Serotonina/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbamidinas/metabolismo , Paladar/genética , Paladar/fisiologia , Papilas Gustativas/efeitos dos fármacos , Transducina/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(36): 14789-94, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959882

RESUMO

Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.


Assuntos
Adenosina Trifosfatases/metabolismo , Papilas Gustativas/enzimologia , Papilas Gustativas/fisiologia , Paladar/fisiologia , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Nervo da Corda do Tímpano/fisiologia , Expressão Gênica , Nervo Glossofaríngeo/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/metabolismo
11.
J Physiol ; 593(5): 1113-25, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524179

RESUMO

Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 µm or 100 µm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities.


Assuntos
Fibras Nervosas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Papilas Gustativas/metabolismo , Paladar , Trifosfato de Adenosina/metabolismo , Animais , Camundongos , Fibras Nervosas/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3/genética , Sinapses/metabolismo , Papilas Gustativas/fisiologia
12.
Chem Senses ; 40(7): 461-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136251

RESUMO

Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/deficiência , Conexinas/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Percepção Gustatória/fisiologia
13.
Proc Natl Acad Sci U S A ; 107(7): 3210-5, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133764

RESUMO

The upper respiratory tract is continually assaulted with harmful dusts and xenobiotics carried on the incoming airstream. Detection of such irritants by the trigeminal nerve evokes protective reflexes, including sneezing, apnea, and local neurogenic inflammation of the mucosa. Although free intra-epithelial nerve endings can detect certain lipophilic irritants (e.g., mints, ammonia), the epithelium also houses a population of trigeminally innervated solitary chemosensory cells (SCCs) that express T2R bitter taste receptors along with their downstream signaling components. These SCCs have been postulated to enhance the chemoresponsive capabilities of the trigeminal irritant-detection system. Here we show that transduction by the intranasal solitary chemosensory cells is necessary to evoke trigeminally mediated reflex reactions to some irritants including acyl-homoserine lactone bacterial quorum-sensing molecules, which activate the downstream signaling effectors associated with bitter taste transduction. Isolated nasal chemosensory cells respond to the classic bitter ligand denatonium as well as to the bacterial signals by increasing intracellular Ca(2+). Furthermore, these same substances evoke changes in respiration indicative of trigeminal activation. Genetic ablation of either G alpha-gustducin or TrpM5, essential elements of the T2R transduction cascade, eliminates the trigeminal response. Because acyl-homoserine lactones serve as quorum-sensing molecules for gram-negative pathogenic bacteria, detection of these substances by airway chemoreceptors offers a means by which the airway epithelium may trigger an epithelial inflammatory response before the bacteria reach population densities capable of forming destructive biofilms.


Assuntos
Células Quimiorreceptoras/metabolismo , Mucosa Nasal/citologia , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Animais , Cálcio/metabolismo , Fluorescência , Deleção de Genes , Bactérias Gram-Negativas/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Compostos de Amônio Quaternário , Canais de Cátion TRPM/genética , Nervo Trigêmeo/fisiologia
14.
Nat Commun ; 14(1): 6194, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798269

RESUMO

Ammonium (NH4+), a breakdown product of amino acids that can be toxic at high levels, is detected by taste systems of organisms ranging from C. elegans to humans and has been used for decades in vertebrate taste research. Here we report that OTOP1, a proton-selective ion channel expressed in sour (Type III) taste receptor cells (TRCs), functions as sensor for ammonium chloride (NH4Cl). Extracellular NH4Cl evoked large dose-dependent inward currents in HEK-293 cells expressing murine OTOP1 (mOTOP1), human OTOP1 and other species variants of OTOP1, that correlated with its ability to alkalinize the cell cytosol. Mutation of a conserved intracellular arginine residue (R292) in the mOTOP1 tm 6-tm 7 linker specifically decreased responses to NH4Cl relative to acid stimuli. Taste responses to NH4Cl measured from isolated Type III TRCs, or gustatory nerves were strongly attenuated or eliminated in an Otop1-/- mouse strain. Behavioral aversion of mice to NH4Cl, reduced in Skn-1a-/- mice lacking Type II TRCs, was entirely abolished in a double knockout with Otop1. These data together reveal an unexpected role for the proton channel OTOP1 in mediating a major component of the taste of NH4Cl and a previously undescribed channel activation mechanism.


Assuntos
Papilas Gustativas , Paladar , Animais , Humanos , Camundongos , Cloreto de Amônio/metabolismo , Células HEK293 , Prótons , Paladar/fisiologia , Papilas Gustativas/fisiologia
15.
J Neurosci ; 31(38): 13654-61, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21940456

RESUMO

In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Purinérgicos P2X2/biossíntese , Receptores Purinérgicos P2X/biossíntese , Transmissão Sináptica/fisiologia , Papilas Gustativas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Cloreto de Potássio/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X/genética , Transmissão Sináptica/genética , Canais de Cátion TRPM/metabolismo , Paladar/fisiologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/ultraestrutura
16.
J Neurosci ; 30(44): 14695-701, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048127

RESUMO

Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis on a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (C(m)), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in C(m) in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein from the TRPM5 promoter or from the GAD67 promoter were used to discriminate type II and type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only type III taste cells show significant depolarization-induced increases in C(m), which were correlated to the voltage-activated calcium currents. The results suggest that type III, but neither type II nor type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers.


Assuntos
Células Quimiorreceptoras/fisiologia , Capacitância Elétrica , Exocitose/fisiologia , Vesículas Sinápticas/fisiologia , Papilas Gustativas/fisiologia , Paladar/fisiologia , Animais , Membrana Celular/fisiologia , Células Cultivadas , Células Quimiorreceptoras/citologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Células Receptoras Sensoriais/fisiologia , Papilas Gustativas/citologia
17.
Curr Opin Physiol ; 20: 8-15, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709046

RESUMO

Sour taste, which is evoked by low pH, is one of the original four fundamental taste qualities, recognized as a distinct taste sensation for centuries, and universally aversive across diverse species. It is generally assumed to have evolved for detection of acids in unripe fruit and spoiled food. But despite decades of study, only recently have the receptor, the neurotransmitter, and the circuits for sour taste been identified. In this review, we describe studies leading up to the identification of the sour receptor as OTOP1, an ion channel that is selectively permeable to protons. We also describe advances in our understanding of how information is transmitted from the taste receptor cells to gustatory neurons, leading to behavioral aversion to acids.

18.
BMC Neurosci ; 11: 77, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20565975

RESUMO

BACKGROUND: Glutamate has been proposed as a transmitter in the peripheral taste system in addition to its well-documented role as an umami taste stimulus. Evidence for a role as a transmitter includes the presence of ionotropic glutamate receptors in nerve fibers and taste cells, as well as the expression of the glutamate transporter GLAST in Type I taste cells. However, the source and targets of glutamate in lingual tissue are unclear. In the present study, we used molecular, physiological and immunohistochemical methods to investigate the origin of glutamate as well as the targeted receptors in taste buds. RESULTS: Using molecular and immunohistochemical techniques, we show that the vesicular transporters for glutamate, VGLUT 1 and 2, but not VGLUT3, are expressed in the nerve fibers surrounding taste buds but likely not in taste cells themselves. Further, we show that P2X2, a specific marker for gustatory but not trigeminal fibers, co-localizes with VGLUT2, suggesting the VGLUT-expressing nerve fibers are of gustatory origin. Calcium imaging indicates that GAD67-GFP Type III taste cells, but not T1R3-GFP Type II cells, respond to glutamate at concentrations expected for a glutamate transmitter, and further, that these responses are partially blocked by NBQX, a specific AMPA/Kainate receptor antagonist. RT-PCR and immunohistochemistry confirm the presence of the Kainate receptor GluR7 in Type III taste cells, suggesting it may be a target of glutamate released from gustatory nerve fibers. CONCLUSIONS: Taken together, the results suggest that glutamate may be released from gustatory nerve fibers using a vesicular mechanism to modulate Type III taste cells via GluR7.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios Eferentes/metabolismo , Receptores de Ácido Caínico/metabolismo , Papilas Gustativas/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios Eferentes/efeitos dos fármacos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Papilas Gustativas/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
19.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988217

RESUMO

The Skn-1a transcription factor (Pou2f3) is required for Type II taste cell differentiation in taste buds. Taste buds in Skn-1a-/- mice lack Type II taste cells but have a concomitant expansion of Type III cells, providing an ideal model to determine the relative role of taste cell types in response specificity. We confirmed that chorda tympani responses to sweet, bitter, and umami stimuli were greatly reduced in the knock-outs (KOs) compared with wild-type (WT) littermates. Skn-1a-/- mice also had reductions to NaCl that were partially amiloride-insensitive, suggesting that both Type II and Type III cells contribute to amiloride-insensitive salt detection in anterior tongue. We also confirmed that responses to sour stimuli are equivalent in the KOs, despite the large increase in the number of Type III taste cells. To examine their innervation, we crossed the Htr3a-GFP (5-HT3A-GFP) reporter mouse with the Skn-1a-/- mice and examined geniculate ganglion neurons for GFP expression and responses to 5-HT. We found no change in the number of 5-HT3A-expressing neurons with KO of Skn-1a Calcium imaging showed that only 5-HT3A-expressing neurons respond to exogenous 5-HT, while most neurons respond to ATP, similar to WT mice. Interestingly, despite loss of all Type II cells, the P2X3 antagonist AF353 blocked all chorda tympani responses. These data collectively raise questions pertaining the source of ATP signaling in the absence of Type II taste cells and whether the additional Type III cells are innervated by fibers that would have normally innervated Type II cells.


Assuntos
Papilas Gustativas , Animais , Nervo da Corda do Tímpano , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotransmissores , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA