Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 64(10): 705-11, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21138158

RESUMO

The internal textures of crystals of moderately radiation-damaged monazite-(Ce) from Moss, Norway, indicate heavy, secondary chemical alteration. In fact, the cm-sized specimens are no longer mono-mineral monazite but rather a composite consisting of monazite-(Ce) and apatite pervaded by several generations of fractures filled with sulphides and a phase rich in Th, Y, and Si. This composite is virtually a 'pseudomorph' after primary euhedral monazite crystals whose faces are still well preserved. The chemical alteration has resulted in major reworking and decomposition of the primary crystals, with potentially uncontrolled elemental changes, including extensive release of Th from the primary monazite and local redeposition of radionuclides in fracture fillings. This seems to question the general alteration-resistance of orthophosphate phases in a low-temperature, 'wet' environment, and hence their suitability as potential host ceramics for the long-term immobilisation of radioactive waste.

2.
Geochem Trans ; 7: 10, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17181855

RESUMO

The effects of crystal-plasticity on the U-Th-Pb system in zircon is studied by quantitative microstructural and microchemical analysis of a large zircon grain collected from pyroxenite of the Lewisian Complex, Scotland. Electron backscatter diffraction (EBSD) mapping reveals a c.18 degree variation in crystallographic orientation that comprises both a gradual change in orientation and a series of discrete low-angle (<4 degrees) boundaries. These microstructural data are consistent with crystal-plastic deformation of zircon associated with the formation and migration of dislocations. A heterogeneous pattern of dark cathodoluminescence, with the darkest domains coinciding with low-angle boundaries, mimics the deformation microstructure identified by EBSD. Geochemical data collected using the Sensitive High Resolution Ion MicroProbe (SHRIMP) shows a positive correlation between concentrations of the elements U, Th and Pb (ranging from 20-60 ppm, 30-110 ppm, and 14-36 ppm, respectively) and Th/U ratio (1.13-1.8) with the deformation microstructure. The highest measured concentrations and Th/U coincide with low-angle boundaries. This enrichment is interpreted to reflect enhanced bulk diffusion of U and Th due to the formation and migration of high-diffusivity dislocations. 207Pb/206Pb ages for individual analyses show no significant variation across the grain, and define a concordant, combined mean age of 2451 +/- 14 Ma. This indicates that the grain was deformed shortly after initial crystallization, most probably during retrograde Inverian metamorphism at amphibolite facies conditions. The elevated Th over U and consistent 207Pb/206Pb ages indicates that deformation most likely occurred in the presence of a late-stage magmatic fluid that drove an increase in the Th/U during deformation. The relative enrichment of Th over U implies that Th/U ratio may not always be a robust indicator of crystallization environment. This study provides the first evidence of deformation-related modification of the U-Th system in zircon and has fundamental implications for the application and interpretation of zircon trace element data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA