Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Physiol ; 108(9): 1172-1188, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37493451

RESUMO

The role of C-type natriuretic peptide (CNP) in the regulation of cardiac function in humans remains to be established as previous investigations have been confined to animal model systems. Here, we used well-characterized engineered cardiac tissues (ECTs) generated from human stem cell-derived cardiomyocytes and fibroblasts to study the acute effects of CNP on contractility. Application of CNP elicited a positive inotropic response as evidenced by increases in maximum twitch amplitude, maximum contraction slope and maximum calcium amplitude. This inotropic response was accompanied by a positive lusitropic response as demonstrated by reductions in time from peak contraction to 90% of relaxation and time from peak calcium transient to 90% of decay that paralleled increases in maximum contraction decay slope and maximum calcium decay slope. To establish translatability, CNP-induced changes in contractility were also assessed in rat ex vivo (isolated heart) and in vivo models. Here, the effects on force kinetics observed in ECTs mirrored those observed in both the ex vivo and in vivo model systems, whereas the increase in maximal force generation with CNP application was only detected in ECTs. In conclusion, CNP induces a positive inotropic and lusitropic response in ECTs, thus supporting an important role for CNP in the regulation of human cardiac function. The high degree of translatability between ECTs, ex vivo and in vivo models further supports a regulatory role for CNP and expands the current understanding of the translational value of human ECTs. NEW FINDINGS: What is the central question of this study? What are the acute responses to C-type natriuretic peptide (CNP) in human-engineered cardiac tissues (ECTs) on cardiac function and how well do they translate to matched concentrations in animal ex vivo and in vivo models? What is the main finding and its importance? Acute stimulation of ECTs with CNP induced positive lusitropic and inotropic effects on cardiac contractility, which closely reflected the changes observed in rat ex vivo and in vivo cardiac models. These findings support an important role for CNP in the regulation of human cardiac function and highlight the translational value of ECTs.


Assuntos
Peptídeo Natriurético Tipo C , Animais , Humanos , Ratos , Cálcio , Contração Miocárdica/fisiologia , Miócitos Cardíacos , Peptídeo Natriurético Tipo C/farmacologia
2.
Pflugers Arch ; 468(11-12): 1853-1863, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27722784

RESUMO

Dose is an important parameter in terms of both efficacy and adverse effects in pharmacological treatment of atrial fibrillation (AF). Both of the class III antiarrhythmics dofetilide and amiodarone have documented anti-AF effects. While dofetilide has dose-related ventricular side effects, amiodarone primarily has adverse non-cardiac effects. Pharmacological inhibition of small conductance Ca2+-activated K+ (SK) channels has recently been reported to be antiarrhythmic in a number of animal AF models. In a Langendorff model of acutely induced AF on guinea pig hearts, it was investigated whether a combination of the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) together with either dofetilide or amiodarone provided a synergistic effect. The duration of AF was reduced with otherwise subefficacious concentrations of either dofetilide or amiodarone when combined with ICA, also at a subefficacious concentration. At a concentration level effective as monotherapy, dofetilide produced a marked increase in the QT interval. This QT prolonging effect was absent when combined with ICA at non-efficacious monotherapy concentrations. The results thereby reveal that combination of subefficacious concentrations of an SK channel blocker and either dofetilide or amiodarone can maintain anti-AF properties, while the risk of ventricular arrhythmias is reduced.


Assuntos
Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Coração/efeitos dos fármacos , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Tiazóis/farmacologia , Amiodarona/uso terapêutico , Animais , Antiarrítmicos/uso terapêutico , Sinergismo Farmacológico , Cobaias , Frequência Cardíaca , Preparação de Coração Isolado , Fenetilaminas/uso terapêutico , Piridinas/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico
3.
J Cardiovasc Pharmacol ; 66(3): 294-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25978690

RESUMO

During recent years, small conductance Ca-activated K (SK) channels have been reported to play a role in cardiac electrophysiology. SK channels seem to be expressed in atria and ventricles, but from a functional perspective, atrial activity is predominant. A general notion seems to be that cardiac SK channels are predominantly coming into play during arrhythmogenic events where intracellular concentration of Ca is increased. During ventricular fibrillation (VF), a surge of [Ca]i has the potential to bind to and open SK channels. To obtain mechanistic insight into possible roles of SK channels during VF, we conducted experiments with an SK channel pore blocker (ICA) and a negatively allosteric modulator (NS8395) in a Langendorff-perfused heart model. Both compounds increased the action potential duration, effective refractory period, and Wenckebach cycle length to comparable extents. Despite these similarities, the SK channel modulator was found to revert and prevent VF more efficiently than the SK channel pore blocker. In conclusion, either negative allosteric modulation of the SK channel with NS8593 is more favorable than pure channel block with ICA or the 2 compounds have different selectivity profiles that makes NS8593 more antiarrhythmic than ICA in a setting of VF.


Assuntos
1-Naftilamina/análogos & derivados , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Fibrilação Ventricular/tratamento farmacológico , 1-Naftilamina/administração & dosagem , 1-Naftilamina/farmacologia , 1-Naftilamina/uso terapêutico , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/farmacologia , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Feminino , Cobaias , Técnicas In Vitro , Preparação de Coração Isolado , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/farmacologia , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
4.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34679505

RESUMO

Angiogenesis is crucial in tissue repair and prevents scar tissue formation following an ischemic event such as myocardial infarction. The ischemia induces formation of new capillaries, which have high expression of integrin αvß3. [68Ga]Ga-NODAGA-E[(cRGDyK)]2 ([68Ga]Ga-RGD) is a promising PET-radiotracer reflecting angiogenesis by binding to integrin αvß3. A Göttingen mini-pig underwent transient catheter-induced left anterior descending artery (LAD) occlusion for 120 min, and after 8 weeks was imaged on a Siemens mMR 3T PET/MR system. A large antero-septal infarction was evident by late gadolinium enhancement (LGE) on the short axis and 2-4 chamber views. The infarcted area corresponded to the area with high [68Ga]Ga-RGD uptake on the fused PET/MR images, with no uptake in the healthy myocardium. To support the hypothesis that [68Ga]Ga-RGD uptake reflects angiogenesis, biopsies were sampled from the infarct border and healthy myocardium. Expression of αvß3 was evaluated using immunohistochemistry. The staining showed higher αvß3 expression in the capillaries of the infarct border compared to those in the healthy myocardium. These initial data confirm in vivo detection of angiogenesis using [68Ga]Ga-RGD PET in a translational model, which overall support the method applicability when evaluating novel cardio-protective therapies.

5.
Front Pharmacol ; 11: 159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180722

RESUMO

AIMS: To describe the effects of the KCa2 channel inhibitor AP30663 in pigs regarding tolerability, cardiac electrophysiology, pharmacokinetics, atrial functional selectivity, effectiveness in cardioversion of tachy-pacing induced vernakalant-resistant atrial fibrillation (AF), and prevention of reinduction of AF. METHODS AND RESULTS: Six healthy pigs with implanted pacemakers and equipped with a Holter monitor were used to compare the effects of increasing doses (0, 5, 10, 15, 20, and 25 mg/kg) of AP30663 on the right atrial effective refractory period (AERP) and on various ECG parameters, including the QT interval. Ten pigs with implanted neurostimulators were long-term atrially tachypaced (A-TP) until sustained vernakalant-resistant AF was present. 20 mg/kg AP30663 was tested to discover if it could successfully convert vernakalant-resistant AF to sinus rhythm (SR) and protect against reinduction of AF. Seven anesthetized pigs were used for pharmacokinetic experiments. Two pigs received an infusion of 20 mg/kg AP30663 over 60 min while five pigs received 5 mg/kg AP30663 over 30 min. Blood samples were collected before, during, and after infusion on AP30663. AP30663 was well-tolerated and prominently increased the AERP in pigs with little effect on ventricular repolarization. Furthermore, it converted A-TP induced AF that had become unresponsive to vernakalant, and it prevented reinduction of AF in pigs. Both a >30 ms increase of the AERP and conversion of AF occurred in different pigs at a free plasma concentration level of around 1.0-1.4 µM of AP30663, which was achieved at a dose level of 5 mg/kg. CONCLUSION: AP30663 has shown properties in animals that would be of clinical interest in man.

6.
Front Pharmacol ; 11: 556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435191

RESUMO

BACKGROUND: Inhibition of KCa2 channels, conducting IKCa, can convert atrial fibrillation (AF) to sinus rhythm and protect against its induction. IKCa inhibition has been shown to possess functional atrial selectivity with minor effects on ventricles. Under pathophysiological conditions with ventricular remodeling, however, inhibiting IKCa can exhibit both proarrhythmic and antiarrhythmic ventricular effects. The aim of this study was to evaluate the effects of the IKCa inhibitor AP14145, when given before or after the IKr blocker dofetilide, on cardiac function and ventricular proarrhythmia markers in pigs with or without left ventricular dysfunction (LVD). METHODS: Landrace pigs were randomized into an AF group (n = 6) and two control groups: SHAM1 (n = 8) and SHAM2 (n = 4). AF pigs were atrially tachypaced (A-TP) for 43 ± 4 days until sustained AF and LVD developed. A-TP and SHAM1 pigs received 20 mg/kg AP14145 followed by 100 µg/kg dofetilide whereas SHAM2 pigs received the same drugs in the opposite order. Proarrhythmic markers such as short-term variability of QT (STVQT) and RR (STVRR) intervals, and the number of premature ventricular complexes (PVCs) were measured at baseline and after administration of drugs. The influence on cardiac function was assessed by measuring cardiac output, stroke volume, and relevant echocardiographic parameters. RESULTS: IKCa inhibition by AP14145 did not increase STVQT or STVRR in any of the pigs. IKr inhibition by dofetilide markedly increased STVQT in the A-TP pigs, but not in SHAM operated pigs. Upon infusion of AP14145 the number of PVCs decreased or remained unchanged both when AP14145 was infused after baseline and after dofetilide. Conversely, the number of PVCs increased or remained unchanged upon dofetilide infusion. Neither AP14145 nor dofetilide affected relevant echocardiographic parameters, cardiac output, or stroke volume in any of the groups. CONCLUSION: IKCa inhibition with AP14145 was not proarrhythmic in healthy pigs, or in the presence of LVD resulting from A-TP. In pigs already challenged with 100 µg/kg dofetilide there were no signs of proarrhythmia when 20 mg/kg AP14145 were infused. KCa2 channel inhibition did not affect cardiac function, implying that KCa2 inhibitors can be administered safely also in the presence of LV dysfunction.

7.
Front Vet Sci ; 7: 179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32328502

RESUMO

Background: Atrial fibrillation (AF) is characterized by electrical and structural remodeling. Irregular and/or fast atrio-ventricular (AV) conduction during AF can result in AV dyssynchrony, tachymyopathy, pressure and volume overload with subsequent dilatation, valve regurgitation, and ventricular dysfunction with progression to heart failure. Objective: To gain further insight into the myocardial pathophysiological changes induced by right atrial tachypacing (A-TP) in a large animal model. Methods: A total of 28 Landrace pigs were randomized as 14 into AF-induced A-TP group and 14 pigs to control group. AF pigs were tachypaced for 43 ± 4 days until in sustained AF. Functional remodeling was investigated by echocardiography (after cardioversion to sinus rhythm). Structural remodeling was quantified by histological preparations with picrosirius red and immunohistochemical stainings. Results: A-TP resulted in decreased left ventricular ejection fraction (LVEF) accompanied by increased end-diastolic and end-systolic left atrium (LA) volume and area. In addition, A-TP was associated with mitral valve (MV) regurgitation, diastolic dysfunction and increased atrial and ventricular fibrotic extracellular matrix (ECM). Conclusions: A-TP induced AF with concomitant LV systolic and diastolic dysfunction, increased LA volume and area, and atrial and ventricular fibrosis.

8.
Front Pharmacol ; 10: 668, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275147

RESUMO

Background and Purpose: Prolongation of cardiac action potentials is considered antiarrhythmic in the atria but can be proarrhythmic in ventricles if the current carried by Kv11.1-channels (IKr) is inhibited. The current mediated by KCa2-channels, IKCa, is considered a promising new target for treatment of atrial fibrillation (AF). Selective inhibitors of IKr (dofetilide) and IKCa (AP14145) were used to compare the effects on ventricular and atrial repolarization. Ondansetron, which has been reported to be a potent blocker of both IKr and IKCa, was included to examine its potential atrial antiarrhythmic properties. Experimental Approach: The expression of KCa2- and Kv11.1-channels in the guinea pig heart was investigated using quantitative polymerase chain reaction (qPCR). Whole-cell patch clamp technique was used to investigate the effects of dofetilide, AP14145, and ondansetron on IKCa and/or IKr. The effect of dofetilide, AP14145, and ondansetron on atrial and ventricular repolarization was investigated in isolated hearts. A novel atrial paced in vivo guinea pig model was further validated using AP14145 and dofetilide. Key Results: AP14145 increased the atrial effective refractory period (AERP) without prolonging the QT interval with Bazett's correction for heart rate (QTcB) both ex vivo and in vivo. In contrast, dofetilide increased QTcB and, to a lesser extent, AERP in isolated hearts and prolonged QTcB with no effects on AERP in the in vivo guinea pig model. Ondansetron did not inhibit IKCa, but did inhibit IKr in vitro. Ondansetron prolonged ventricular, but not atrial repolarization ex vivo. Conclusion and Implications: IKCa inhibition by AP14145 selectively increases atrial repolarization, whereas IKr inhibition by dofetilide and ondansetron increases ventricular repolarization to a larger extent than atrial repolarization.

9.
Br J Pharmacol ; 174(23): 4396-4408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28925012

RESUMO

BACKGROUND AND PURPOSE: Small conductance calcium-activated potassium (KCa 2) channels represent a promising atrial-selective target for treatment of atrial fibrillation. Here, we establish the mechanism of KCa 2 channel inhibition by the new compound AP14145. EXPERIMENTAL APPROACH: Using site-directed mutagenesis, binding determinants for AP14145 inhibition were explored. AP14145 selectivity and mechanism of action were investigated by patch-clamp recordings of heterologously expressed KCa 2 channels. The biological efficacy of AP14145 was assessed by measuring atrial effective refractory period (AERP) prolongation in anaesthetized rats, and a beam walk test was performed in mice to determine acute CNS-related effects of the drug. KEY RESULTS: AP14145 was found to be an equipotent negative allosteric modulator of KCa 2.2 and KCa 2.3 channels (IC50  = 1.1 ± 0.3 µM). The presence of AP14145 (10 µM) increased the EC50 of Ca2+ on KCa 2.3 channels from 0.36 ± 0.02 to 1.2 ± 0.1 µM. The inhibitory effect strongly depended on two amino acids, S508 and A533 in the channel. AP14145 concentration-dependently prolonged AERP in rats. Moreover, AP14145 (10 mg·kg-1 ) did not trigger any apparent CNS effects in mice. CONCLUSIONS AND IMPLICATIONS: AP14145 is a negative allosteric modulator of KCa 2.2 and KCa 2.3 channels that shifted the calcium dependence of channel activation, an effect strongly dependent on two identified amino acids. AP14145 prolonged AERP in rats and did not trigger any acute CNS effects in mice. The understanding of how KCa 2 channels are inhibited, at the molecular level, will help further development of drugs targeting KCa 2 channels.


Assuntos
Acetamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Acetamidas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/administração & dosagem , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
10.
Heart Rhythm ; 12(2): 409-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25496982

RESUMO

BACKGROUND: Application of antiarrhythmic compounds is limited by both proarrhythmic and extracardiac toxicities, as well as incomplete antiarrhythmic efficacy. An improved antiarrhythmic potential may be obtained by combining antiarrhythmic drugs with different modes of action, and a reduction of the adverse effect profile could be an additional advantage if compound concentrations could be reduced. OBJECTIVE: The purpose of this study was to test the hypothesis that combined inhibition of Ca(2+)-activated K(+) channels (SK channels) and voltage-gated Na(+) channels, in concentrations that would be subefficacious as monotherapy, may prevent atrial fibrillation (AF) and have reduced proarrhythmic potential in the ventricles. METHODS: Subefficacious concentrations of ranolazine, flecainide, and lidocaine were tested alone or in combination with the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) in a Langendorff-perfused guinea pig heart model in which AF was induced after acetylcholine application and burst pacing. RESULTS: AF duration was reduced when both flecainide and ranolazine were combined with ICA in doses that did not reduce AF as monotherapy. At higher concentrations, both flecainide and ranolazine revealed proarrhythmic properties. CONCLUSION: A synergistic effect in AF treatment was obtained by combining low concentrations of SK and Na(+) channel blockers.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Eletrocardiografia/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Acetanilidas/farmacologia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Flecainida/farmacologia , Cobaias , Piperazinas/farmacologia , Ranolazina , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
11.
Drug Alcohol Depend ; 137: 83-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24576814

RESUMO

BACKGROUND: There is extensive evidence implicating the metabotropic glutamate 5 (mGlu5) receptor in aspects of addiction-related behaviours. METHODS: Here, we used a well-characterized line of mGlu5-deficient mice to further examine the role of this receptor in cocaine-driven behaviours. We confirmed the previously reported deficit in hippocampal long-term potentiation and associated spatial learning impairment. RESULTS: Despite a spatial learning deficit, mGlu5-deficient mice developed and maintained a conditioned place preference to cocaine, suggesting cocaine reward and Pavlovian conditioning are intact in these animals. Notably, however, mGlu5-deficient mice exhibited a marked deficit in the extinction of a cocaine-conditioned place preference compared to wild type littermates. Moreover, in a fixed ratio operant intravenous self-administration paradigm, both genotypes showed similar responding for cocaine over two different doses, while mGlu5-deficient mice displayed enhanced responding on a progressive ratio schedule. In addition, cue-induced drug-seeking after abstinence was exaggerated in mGlu5-deficient mice. CONCLUSION: Collectively, these findings suggest that while the mGlu5 receptor may be involved in mediating the rewarding effects of cocaine, it appears necessary for the extinction of cocaine-driven behaviours.


Assuntos
Comportamento Aditivo/genética , Comportamento Aditivo/psicologia , Cocaína/administração & dosagem , Extinção Psicológica/fisiologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Autoadministração
12.
Behav Brain Res ; 208(2): 444-9, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20035793

RESUMO

Systemic injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice is one of the primary models used to evaluate neuroprotective and symptomatic treatment strategies for Parkinson's disease. Many behavioral methods for evaluation of MPTP toxicity have been described, but they often involve challenging scenarios that require handling and transfer of animals to novel environments and in some cases prior animal training. These factors can profoundly influence animal behavior and potentially influence experimental outcome. Presented here is a new nest building scoring paradigm based on the animals' normal home cage behavior that is a simple, non-invasive, and reproducible measure for estimating neurological dysfunction in MPTP intoxicated mice. Nest building behavior requires orofacial and forelimb movement and has been shown to be dopamine-dependent making it a possible method for assessing parkinsonian-like symptoms. Significant deficits in nest building scores after 2x20 and 2x25 mg/kg MPTP coincided with a 90% reduction in striatal dopamine. Nest building deficits could be detected for more than a week after intoxication. However, after 28 days the change in behavior was no longer detected, which may reflect the plasticity of the tyrosine hydroxylase positive neurons in the dorsolateral part of striatum.


Assuntos
Intoxicação por MPTP/fisiopatologia , Comportamento de Nidação/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Comportamento Animal , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotoxinas/toxicidade , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Neuroreport ; 20(5): 482-6, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19262413

RESUMO

Intoxication induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice results in a significant loss of nigrostriatal dopamine (DA) neurons. This is accompanied by a change in behavioural phenotype that can be reversed by L-DOPA (3,4-dihydroxy-L-phenylalanine) treatment. Here, we examined the extracellular levels of DA, behavioural deficits and the response to L-DOPA treatment in severely intoxicated mice. The MPTP intoxication produced more than a 90% reduction in tissue DA and a 65% decline in extracellular DA levels. In-vivo binding did not show any increased raclopride binding to the D2 receptor. Administration of L-DOPA, 5 or 20 mg/kg (subcutaneously), significantly increased dialysate DA levels and both doses of L-DOPA reversed the behavioural deficit. Interestingly, only 5 mg/kg L-DOPA normalized DA levels to 56% of controls showing that only a minor increase in DA levels is sufficient to yield motor recovery.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Espaço Extracelular/metabolismo , Intoxicação por MPTP/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Dopaminérgicos/administração & dosagem , Levodopa/administração & dosagem , Intoxicação por MPTP/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurotoxinas/toxicidade , Racloprida/metabolismo , Receptores de Dopamina D2/metabolismo , Trítio/metabolismo
14.
Int J Neuropsychopharmacol ; 11(6): 765-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18400131

RESUMO

The metabotropic glutamate receptor 5 (mGlu5) has been implicated in ethanol- and drug-seeking behaviours in rodent studies. Here we examine a number of ethanol-related behavioural assays in mice lacking mGlu5 and wild-type littermates. In a two-bottle free-choice paradigm, mGlu5-deficient mice consumed less ethanol with a reduced preference compared to wild-type mice. Indeed, mGlu5-deficienct mice were ethanol-avoiding at both concentrations of ethanol proffered (5% and 10% v/v). However, there was no difference in the rate of hepatic ethanol and acetaldehyde metabolism between genotypes and consumption of saccharin was similar. In a conditioned place preference study, mGlu5-deficient mice displayed a place preference for ethanol when conditioned with a low dose (1g/kg) of ethanol. Thus, while mGlu5-deficient mice consume less ethanol (with a reduced preference) than wild-type mice, this is not apparently related to impaired hepatic metabolism or a lack of reward from ethanol. Rather, we provide evidence that deletion of the mGlu5 receptor increases sensitivity to centrally mediated effects of ethanol.


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Análise de Variância , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/deficiência , Reflexo/efeitos dos fármacos , Reflexo/genética
15.
Alcohol Clin Exp Res ; 31(7): 1128-37, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17451402

RESUMO

BACKGROUND: While angiotensin receptors are found on the soma and terminals of dopaminergic neurons, controversy surrounds the potential role of angiotensin in alcohol consumption. METHODS: Using a transgenic mouse with a brain-specific overexpression of angiotensin AT(1A) receptors (NSE-AT(1A) mice), we have examined the role of angiotensin in alcohol consumption and alcohol-induced regulation of the dopaminergic system. RESULTS: The functional relevance of the overexpressed AT(1A) receptors was confirmed by an exaggerated rehydration response following 24-hour dehydration. NSE-AT(1A) mice showed a high preference for alcohol (similar to wild-type mice); yet, raclopride treatment had no effect on alcohol consumption in NSE-AT(1A) mice, while significantly reducing consumption in wild-type mice. In contrast, NSE-AT(1A) mice showed enhanced sensitivity to raclopride compared with wild types in terms of D(2) receptor up-regulation within the ventral mesencephalon. In addition, striatal D(2) receptors in NSE-AT(1A) mice were sensitive to up-regulation by chronic alcohol consumption. CONCLUSIONS: Collectively, these data imply that while expression of angiotensin AT(1A) receptors on striatal neurons has no impact upon basal alcohol consumption or preference, AT(1A) receptors do modulate the sensitivity of dopamine D(2) receptors to regulation by alcohol and the ability of a D(2) receptor antagonist to reduce consumption.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Gânglios da Base/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2 , Receptor Tipo 1 de Angiotensina/fisiologia , Regulação para Cima/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Angiotensinas/farmacologia , Animais , Autorradiografia , Gânglios da Base/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Comportamento de Ingestão de Líquido/fisiologia , Etanol/farmacologia , Hidratação , Genótipo , Camundongos , Camundongos Transgênicos , Fenótipo , Racloprida/farmacologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Regulação para Cima/genética , Regulação para Cima/fisiologia , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA