Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2120489119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867828

RESUMO

Cellular lipid uptake (through endocytosis) is a basic physiological process. Dysregulation of this process underlies the pathogenesis of diseases such as atherosclerosis, obesity, diabetes, and cancer. However, to date, only some mechanisms of lipid endocytosis have been discovered. Here, we show a previously unknown mechanism of lipid cargo uptake into cells mediated by the receptor Mincle. We found that the receptor Mincle, previously shown to be a pattern recognition receptor of the innate immune system, tightly binds a range of self-lipids. Moreover, we revealed the minimal molecular motif in lipids that is sufficient for Mincle recognition. Superresolution microscopy showed that Mincle forms vesicles in cytoplasm and colocalizes with added fluorescent lipids in endothelial cells but does not colocalize with either clathrin or caveolin-1, and the added lipids were predominantly incorporated in vesicles that expressed Mincle. Using a model of ganglioside GM3 uptake in brain vessel endothelial cells, we show that the knockout of Mincle led to a dramatic decrease in lipid endocytosis. Taken together, our results have revealed a fundamental lipid endocytosis pathway, which we call Mincle-mediated endocytosis (MiME), and indicate a prospective target for the treatment of disorders of lipid metabolism, which are rapidly increasing in prevalence.


Assuntos
Endocitose , Lectinas Tipo C , Metabolismo dos Lipídeos , Proteínas de Membrana , Animais , Transporte Biológico/genética , Transporte Biológico/fisiologia , Endocitose/genética , Endocitose/fisiologia , Células Endoteliais/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
2.
Biochemistry (Mosc) ; 89(6): 1122-1132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981705

RESUMO

Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair. We have shown that ATM and DNA-PK, but not ATR, undergo autophosphorylation during postintegrational DNA repair and phosphorylate their target proteins Chk2 and H2AX. These data indicate common signaling mechanisms between the double-strand DNA break repair and postintegrational repair of HIV-1 DNA.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Proteína Quinase Ativada por DNA , HIV-1 , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Fosforilação , Proteína Quinase Ativada por DNA/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Integração Viral , Histonas/metabolismo , Quebras de DNA de Cadeia Dupla
3.
Biochemistry (Mosc) ; 88(7): 1034-1044, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751872

RESUMO

Cysteine cathepsins play an important role in tumor development and metastasis. The expression of these enzymes is often increased in many types of tumor cells. Cysteine cathepsins contribute to carcinogenesis through a number of mechanisms, including proteolysis of extracellular matrix and signaling molecules on the cell surface, as well as degradation of transcription factors and disruption of signaling cascades in the cell nucleus. Distinct oncogenic functions have been reported for several members of the cysteine cathepsin family in various types of cancer, but a comparative study of all eleven cysteine cathepsins in one experimental model is still missing. In this work, we assessed and compared the expression, localization, and maturation of all eleven cysteine cathepsins in embryonic kidney cells HEK293 and kidney cancer cell lines 769-P and A-498. We found that the expression of cathepsins V, B, Z, L, and S was 3- to 9-fold higher in kidney tumor cells than in embryonic cells. We also showed that all cysteine cathepsins were present in varying amounts in the nucleus of both embryonic and tumor cells. Notably, more than half of the cathepsin Z or K and over 88% of cathepsin F were localized in tumor cell nuclei. Moreover, mature forms of cysteine cathepsins were more prevalent in tumor cells than in embryonic cells. These results can be further used to develop novel diagnostic tools and may assist in the investigation of cysteine cathepsins as potential therapeutic targets.

4.
Biochemistry (Mosc) ; 88(2): 189-201, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072326

RESUMO

Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.


Assuntos
Cálcio , Distrofina , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos mdx , Benzimidazóis/farmacologia , Benzimidazóis/metabolismo , Mitocôndrias Cardíacas/metabolismo
5.
Nucleic Acids Res ; 49(18): 10524-10541, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-33836078

RESUMO

Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.


Assuntos
Cromatina/química , Glicóis/farmacologia , Cromatina/efeitos dos fármacos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Genoma Humano , Células HeLa , Humanos , Microscopia , Regiões Promotoras Genéticas/efeitos dos fármacos
6.
Biochemistry (Mosc) ; 86(10): 1288-1300, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903160

RESUMO

One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.


Assuntos
Lamina Tipo A/metabolismo , Neoplasias/metabolismo , Lâmina Nuclear/metabolismo , Animais , Movimento Celular/fisiologia , Núcleo Celular/química , Núcleo Celular/metabolismo , Elasticidade , Matriz Extracelular/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/patologia
7.
Biochemistry (Mosc) ; 86(8): 1012-1024, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488577

RESUMO

Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.


Assuntos
Aptâmeros de Nucleotídeos/química , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , RNA/química , Anticorpos Monoclonais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Citoplasma/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB , Glioblastoma/genética , Humanos , Concentração Inibidora 50 , Células MCF-7 , Microscopia de Fluorescência , Oligonucleotídeos/química , Medicina de Precisão , Transporte Proteico
8.
Nucleic Acids Res ; 47(13): 6811-6825, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31114877

RESUMO

The contribution of nucleoli to the cellular stress response has been discussed for over a decade. Stress-induced inhibition of RNA polymerase I-dependent transcription is hypothesized as a possible effector program in such a response. In this study, we report a new mechanism by which ribosomal DNA transcription can be inhibited in response to cellular stress. Specifically, we demonstrate that mild hypoosmotic stress induces stabilization of R loops in ribosomal genes and thus provokes the nucleoli-specific DNA damage response, which is governed by the ATM- and Rad3-related (ATR) kinase. Activation of ATR in nucleoli strongly depends on Treacle, which is needed for efficient recruitment/retention of TopBP1 in nucleoli. Subsequent ATR-mediated activation of ATM results in repression of nucleolar transcription.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteínas de Transporte/genética , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Inativação Gênica , Proteínas Nucleares/genética , Pressão Osmótica , Estruturas R-Loop , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Nucléolo Celular/efeitos dos fármacos , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Replicação do DNA , Dactinomicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Histonas/metabolismo , Humanos , Soluções Hipotônicas/farmacologia , Camundongos , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
Haematologica ; 105(4): 1095-1106, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31278208

RESUMO

Wiskott-Aldrich syndrome (WAS) is associated with thrombocytopenia of unclear origin. We investigated real-time cytosolic calcium dynamics, mitochondrial membrane potential and phoszphatidylserine (PS) exposure in single fibrinogen-bound platelets using confocal microscopy. The WAS platelets had higher resting calcium levels, more frequent spikes, and their mitochondria more frequently lost membrane potential followed by PS exposure (in 22.9% of platelets vs 3.9% in controls; P<0.001) after the collapse of the last mitochondria. This phenomenon was inhibited by the mitochondrial permeability transition pore inhibitor cyclosporine A, as well by xestospongin C and lack of extracellular calcium. Thapsigargin by itself caused accelerated cell death in the WAS platelets. The number of mitochondria was predictive of PS exposure: 33% of platelets from WAS patients with fewer than five mitochondria exposed PS, while only 12% did among those that had five or more mitochondria. Interestingly, healthy donor platelets with fewer mitochondria also more readily became procoagulant upon PAR1/PAR4 stimulation. Collapse of single mitochondria led to greater cytosolic calcium increase in WAS platelets if they had one to three mitochondria compared with platelets containing higher numbers. A computer systems biology model of platelet calcium homeostasis showed that smaller platelets with fewer mitochondria could have impaired calcium homeostasis because of higher surface-to-volume ratio and greater metabolic load, respectively. There was a correlation (C=0.81, P<0.02) between the mean platelet size and platelet count in the WAS patients. We conclude that WAS platelets readily expose PS via a mitochondria-dependent necrotic mechanism caused by their smaller size, which could contribute to the development of thrombocytopenia.


Assuntos
Plaquetas , Síndrome de Wiskott-Aldrich , Plaquetas/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Necrose , Síndrome de Wiskott-Aldrich/metabolismo
10.
J Eukaryot Microbiol ; 67(3): 393-402, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003917

RESUMO

Labyrinthulomycetes are mostly fungus-like heterotrophic protists that absorb nutrients in an osmotrophic or phagotrophic manner. Members of order Labyrinthulida produce unique membrane-bound ectoplasmic networks for movement and feeding. Among the various types of labyrinthulids' food substrates, diatoms play an important role due to their ubiquitous distribution and abundant biomass. We isolated and cultivated new diatom consuming Labyrinthulida strains from shallow coastal marine sediments. We described Labyrinthula diatomea n. sp. that differs from all known labyrinthulids in both molecular and morphological features. We provided strain delimitation within the genus Labyrinthula based on ITS sequences via haplotype network construction and compared it with previous phylogenetic surveys.


Assuntos
Diatomáceas/classificação , Diatomáceas/citologia , Sedimentos Geológicos/parasitologia , Análise de Sequência de DNA/métodos , DNA de Algas/genética , Diatomáceas/isolamento & purificação , Microscopia , Filogenia , Subunidades Ribossômicas Menores de Eucariotos/genética
11.
Bioconjug Chem ; 30(3): 741-750, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30726065

RESUMO

A novel approach to the synthesis of pH-sensitive prodrugs has been proposed: thiourea drug modification. Resulting prodrugs can release the cytotoxic agent and the biologically active 2-thiohydantoin in the acidic environment of tumor cells. The concept of acid-catalyzed cyclization of thioureas to 2-thiohydantoins has been proven using a FRET model. Dual prodrugs of model azidothymidine, cytotoxic doxorubicin, and 2-thiohydantoin albutoin were obtained, which release the corresponding drugs in the acidic environment. The resulting doxorubicin prodrug was tested on prostate cancer cells and showed that the thiourea-modified prodrug is less cytotoxic (average IC50 ranging from 0.5584 to 0.9885 µM) than doxorubicin (IC50 ranging from 0.01258 to 0.02559 µM) in neutral pH 7.6 and has similar toxicity (average IC50 ranging from 0.4970 to 0.7994 µM) to doxorubicin (IC50 ranging from 0.2303 to 0.8110 µM) under mildly acidic conditions of cancer cells. Cellular and nuclear accumulation in PC3 tumor cells of Dox prodrug is much higher than accumulation of free doxorubicin.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Pró-Fármacos/farmacologia , Tioureia/química , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/química , Fluoresceína/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Masculino , Naftalenos/química , Pró-Fármacos/química , Neoplasias da Próstata/patologia
12.
Blood ; 128(13): 1745-55, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27432876

RESUMO

Binding of coagulation factors to phosphatidylserine (PS)-exposing procoagulant-activated platelets followed by formation of the membrane-dependent enzyme complexes is critical for blood coagulation. Procoagulant platelets formed upon strong platelet stimulation, usually with thrombin plus collagen, are large "balloons" with a small (∼1 µm radius) "cap"-like convex region that is enriched with adhesive proteins. Spatial distribution of blood coagulation factors on the surface of procoagulant platelets was investigated using confocal microscopy. All of them, including factors IXa (FIXa), FXa/FX, FVa, FVIII, prothrombin, and PS-sensitive marker Annexin V were distributed nonhomogeneously: they were primarily localized in the "cap," where their mean concentration was by at least an order of magnitude, higher than on the "balloon." Assembly of intrinsic tenase on liposomes with various PS densities while keeping the PS content constant demonstrated that such enrichment can accelerate this reaction by 2 orders of magnitude. The mechanisms of such acceleration were investigated using a 3-dimensional computer simulation model of intrinsic tenase based on these data. Transmission electron microscopy and focal ion beam-scanning electron microscopy with Annexin V immunogold-labeling revealed a complex organization of the "caps." In platelet thrombi formed in whole blood on collagen under arterial shear conditions, ubiquitous "caps" with increased Annexin V, FX, and FXa binding were observed, indicating relevance of this mechanism for surface-attached platelets under physiological flow. These results reveal an essential heterogeneity in the surface distribution of major coagulation factors on the surface of procoagulant platelets and suggest its importance in promoting membrane-dependent coagulation reactions.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Adulto , Anexina A5/metabolismo , Plaquetas/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Simulação por Computador , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Microscopia Confocal , Microscopia Imunoeletrônica , Fosfatidilserinas/sangue , Ativação Plaquetária/fisiologia , Ligação Proteica , Trombina/metabolismo , Trombose/metabolismo , Trombose/patologia
13.
Anal Biochem ; 552: 24-29, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412172

RESUMO

The overwhelming majority of investigations on mitochondrial morphology were performed using S. cerevisiae. In this study we showed the benefits of applying new model organisms including petite-negative D. magnusii and Y. lipolytica yeasts for visualization of mitochondrial fragmentation. Normally giant D. magnusii cells and filament-like Y. lipolytica cells contain the highly structured mitochondrial reticulum. Oxidative stress mediated by tert-butyl hydroperoxide triggered mitochondrial fragmentation in yeasts. In D. magnusii mitochondrial fragmentation was also induced by impairing the oxidative phosphorylation system. Higher prooxidant concentrations caused cell death. Cationic lipophilic antioxidant SkQ1 acted downstream of the excessive ROS production and prevented partially or almost totally oxidative stress and related mitochondrial fragmentation and cell death. We believe that utility of D. magnusii and Y. lipolytica yeasts as a "living test tube" would be useful for providing new information concerning the interplay between mitochondrial dynamics and mitochondrial dysfunction, cell cycle, aging, mitophagy and cell death.


Assuntos
Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Leveduras/metabolismo , Citometria de Fluxo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/farmacologia
14.
Bioorg Med Chem Lett ; 28(3): 382-387, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269214

RESUMO

Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Paclitaxel/síntese química , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
15.
Cell Mol Neurobiol ; 37(8): 1443-1455, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28236056

RESUMO

We have studied how various drugs increasing the rate of nicotinic acetylcholine receptors (nAChRs) lateral diffusion affect the depression of ACh-induced current in land snail Helix lucorum neurons responsible for defensive behavior. The acetylcholine (ACh) iontophoretic application protocol imitated the behavioral habituation protocol for the intact animal. We found that the drugs decreasing cholesterol level in cell membranes as methyl-ß-cyclodextrin 1 mM and Ro 48-8071 2 µM, and polyclonal antibodies to actin-binding proteins as spectrin 5 µg/ml and merlin 2.5 µg/ml have changed the dynamic of ACh-current depression. The nAChRs lateral diffusion coefficient was obtained by fluorescence recovery after photobleaching. A curve fitting model specially created for analysis of short-term choline sensitivity depression in snail neurons helped us evaluate separately the contribution of nAChRs lateral diffusion, their endocytosis and exocytosis to observed effects during electrophysiological experiments. Taken together, we hypothesize that nAChRs lateral diffusion plays an important role in the cellular correlate of habituation in land snail Helix lucorum neurons.


Assuntos
Acetilcolina/farmacologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Difusão/efeitos dos fármacos , Caracois Helix , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Histochem Cell Biol ; 145(4): 419-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26883443

RESUMO

The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.


Assuntos
Interfase , Lâmina Nuclear/metabolismo , Animais , Células Cultivadas , Cricetulus , Humanos , Camundongos , Lâmina Nuclear/química , Suínos
17.
Nucleic Acids Res ; 41(6): 3563-75, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396278

RESUMO

The current progress in the study of the spatial organization of interphase chromosomes became possible owing to the development of the chromosome conformation capture (3C) protocol. The crucial step of this protocol is the proximity ligation-preferential ligation of DNA fragments assumed to be joined within nuclei by protein bridges and solubilized as a common complex after formaldehyde cross-linking and DNA cleavage. Here, we show that a substantial, and in some cases the major, part of DNA is not solubilized from cross-linked nuclei treated with restriction endonuclease(s) and sodium dodecyl sulphate and that this treatment neither causes lysis of the nucleus nor drastically affects its internal organization. Analysis of the ligation frequencies of the mouse ß-globin gene domain DNA fragments demonstrated that the previously reported 3C signals were generated predominantly, if not exclusively, in the insoluble portion of the 3C material. The proximity ligation thus occurs within the cross-linked chromatin cage in non-lysed nuclei. The finding does not compromise the 3C protocol but allows the consideration of an active chromatin hub as a folded chromatin domain or a nuclear compartment rather than a rigid complex of regulatory elements.


Assuntos
Cromatina/química , Animais , Núcleo Celular/química , DNA/análise , Enzimas de Restrição do DNA , Histonas/análise , Fígado/ultraestrutura , Camundongos , Dodecilsulfato de Sódio , Solubilidade , Globinas beta/genética
19.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540736

RESUMO

Duchenne muscular dystrophy is caused by loss of the dystrophin protein. This pathology is accompanied by mitochondrial dysfunction contributing to muscle fiber instability. It is known that mitochondria-targeted in vivo therapy mitigates pathology and improves the quality of life of model animals. In the present work, we applied mitochondrial transplantation therapy (MTT) to correct the pathology in dystrophin-deficient mdx mice. Intramuscular injections of allogeneic mitochondria obtained from healthy animals into the hind limbs of mdx mice alleviated skeletal muscle injury, reduced calcium deposits in muscles and serum creatine kinase levels, and improved the grip strength of the hind limbs and motor activity of recipient mdx mice. We noted normalization of the mitochondrial ultrastructure and sarcoplasmic reticulum/mitochondria interactions in mdx muscles. At the same time, we revealed a decrease in the efficiency of oxidative phosphorylation in the skeletal muscle mitochondria of recipient mdx mice accompanied by a reduction in lipid peroxidation products (MDA products) and reduced calcium overloading. We found no effect of MTT on the expression of mitochondrial signature genes (Drp1, Mfn2, Ppargc1a, Pink1, Parkin) and on the level of mtDNA. Our results show that systemic MTT mitigates the development of destructive processes in the quadriceps muscle of mdx mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Distrofina/genética , Cálcio/metabolismo , Qualidade de Vida , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo
20.
Cells ; 13(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38201309

RESUMO

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Assuntos
Filamentos Intermediários , Vimentina , Movimento Celular , Citoplasma , Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA