Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 50(5)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29191950

RESUMO

Chronic obstructive pulmonary disease (COPD) airways are characterised by thickening of airway smooth muscle, partly due to airway smooth muscle cell (ASMC) hyperplasia. Metabolic reprogramming involving increased glycolysis and glutamine catabolism supports the biosynthetic and redox balance required for cellular growth. We examined whether COPD ASMCs show a distinct metabolic phenotype that may contribute to increased growth.We performed an exploratory intracellular metabolic profile analysis of ASMCs from healthy nonsmokers, healthy smokers and COPD patients, under unstimulated or growth conditions of transforming growth factor (TGF)-ß and fetal bovine serum (FBS).COPD ASMCs showed impaired energy balance and accumulation of the glycolytic product lactate, glutamine, fatty acids and amino acids compared to controls in unstimulated and growth conditions. Fatty acid oxidation capacity was reduced under unstimulated conditions. TGF-ß/FBS-stimulated COPD ASMCs showed restoration of fatty acid oxidation capacity, upregulation of the pentose phosphate pathway product ribose-5-phosphate and of nucleotide biosynthesis intermediates, and increased levels of the glutamine catabolite glutamate. In addition, TGF-ß/FBS-stimulated COPD ASMCs showed a higher reduced-to-oxidised glutathione ratio and lower mitochondrial oxidant levels. Inhibition of glycolysis and glutamine depletion attenuated TGF-ß/FBS-stimulated growth of COPD ASMCs.Changes in glycolysis, glutamine and fatty acid metabolism may lead to increased biosynthesis and redox balance, supporting COPD ASMC growth.


Assuntos
Brônquios/citologia , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Fator de Crescimento Transformador beta/farmacologia
2.
J Allergy Clin Immunol ; 136(3): 769-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25828268

RESUMO

BACKGROUND: Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. OBJECTIVE: We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. METHODS: Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. RESULTS: Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-ß-induced ASM cell proliferation and CXCL8 release. CONCLUSIONS: Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/metabolismo , Músculo Liso/metabolismo , Compostos Organofosforados/farmacologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório/metabolismo , Ubiquinona/análogos & derivados , Adulto , Idoso , Remodelação das Vias Aéreas/genética , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , Ozônio , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/genética , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/patologia , Transdução de Sinais , Fumar/metabolismo , Fumar/fisiopatologia , Ubiquinona/farmacologia
3.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1274-85, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26078397

RESUMO

Oxidant-mediated tissue injury is key to the pathogenesis of acute lung injury. Glutathione-S-transferases (GSTs) are important detoxifying enzymes that catalyze the conjugation of glutathione with toxic oxidant compounds and are associated with acute and chronic inflammatory lung diseases. We hypothesized that attenuation of cellular GST enzymes would augment intracellular oxidative and metabolic stress and induce lung cell injury. Treatment of murine lung epithelial cells with GST inhibitors, ethacrynic acid (EA), and caffeic acid compromised lung epithelial cell viability in a concentration-dependent manner. These inhibitors also potentiated cell injury induced by hydrogen peroxide (H2O2), tert-butyl-hydroperoxide, and hypoxia and reoxygenation (HR). SiRNA-mediated attenuation of GST-π but not GST-µ expression reduced cell viability and significantly enhanced stress (H2O2/HR)-induced injury. GST inhibitors also induced intracellular oxidative stress (measured by dihydrorhodamine 123 and dichlorofluorescein fluorescence), caused alterations in overall intracellular redox status (as evidenced by NAD(+)/NADH ratios), and increased protein carbonyl formation. Furthermore, the antioxidant N-acetylcysteine completely prevented EA-induced oxidative stress and cytotoxicity. Whereas EA had no effect on mitochondrial energetics, it significantly altered cellular metabolic profile. To explore the physiological impact of these cellular events, we used an ex vivo mouse-isolated perfused lung model. Supplementation of perfusate with EA markedly affected lung mechanics and significantly increased lung permeability. The results of our combined genetic, pharmacological, and metabolic studies on multiple platforms suggest the importance of GST enzymes, specifically GST-π, in the cellular and whole lung response to acute oxidative and metabolic stress. These may have important clinical implications.


Assuntos
Ácidos Cafeicos/farmacologia , Células Epiteliais/enzimologia , Ácido Etacrínico/farmacologia , Glutationa Transferase/antagonistas & inibidores , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/enzimologia , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Western Blotting , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Técnicas Imunoenzimáticas , Lesão Pulmonar/patologia , Metabolômica , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1112-23, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26320152

RESUMO

In chronic obstructive pulmonary disease (COPD), oxidative stress regulates the inflammatory response of bronchial epithelium and monocytes/macrophages through kinase modulation and has been linked to glucocorticoid unresponsiveness. Glycogen synthase-3ß (GSK3ß) inactivation plays a key role in mediating signaling processes upon reactive oxygen species (ROS) exposure. We hypothesized that GSK3ß is involved in oxidative stress-induced glucocorticoid insensitivity in COPD. We studied levels of phospho-GSK3ß-Ser9, a marker of GSK3ß inactivation, in lung sections and cultured monocytes and bronchial epithelial cells of COPD patients, control smokers, and nonsmokers. We observed increased levels of phospho-GSK3ß-Ser9 in monocytes, alveolar macrophages, and bronchial epithelial cells from COPD patients and control smokers compared with nonsmokers. Pharmacological inactivation of GSK3ß did not affect CXCL8 or granulocyte-macrophage colony-stimulating factor (GM-CSF) expression but resulted in glucocorticoid insensitivity in vitro in both inflammatory and structural cells. Further mechanistic studies in monocyte and bronchial epithelial cell lines showed that GSK3ß inactivation is a common effector of oxidative stress-induced activation of the MEK/ERK-1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways leading to glucocorticoid unresponsiveness. In primary monocytes, the mechanism involved modulation of histone deacetylase 2 (HDAC2) activity in response to GSK3ß inactivation. In conclusion, we demonstrate for the first time that ROS-induced glucocorticoid unresponsiveness in COPD is mediated through GSK3ß, acting as a ROS-sensitive hub.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Quinase 3 da Glicogênio Sintase/fisiologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Células Cultivadas , Dexametasona/uso terapêutico , Feminino , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Histona Desacetilase 2/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos Alveolares/enzimologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/enzimologia , Transdução de Sinais
5.
Clin Sci (Lond) ; 126(6): 425-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24040961

RESUMO

Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions, respectively, and was associated with a decrease in DNA-binding activity and protein expression of HDAC2. Decreased HDAC2 activity, most likely a direct result of protein modification, in combination with the loss of the antioxidative stress response and activation of the HIF-1α pathway, contribute to the inflammatory response and emphysema observed in ozone-exposed mice.


Assuntos
Poluentes Atmosféricos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ozônio/farmacologia , Pneumonia/induzido quimicamente , Idoso , Animais , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Citocinas/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes Fotoquímicos/administração & dosagem , Oxidantes Fotoquímicos/farmacologia , Ozônio/administração & dosagem , Fosforilação/efeitos dos fármacos , Pneumonia/genética , Pneumonia/patologia , Pneumonia/fisiopatologia , Enfisema Pulmonar/induzido quimicamente , RNA Mensageiro/genética , Superóxido Dismutase/metabolismo
6.
Am J Pathol ; 181(1): 347-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22658487

RESUMO

IgG may accelerate atherosclerosis via ligation of proinflammatory Fcγ receptors; however, IgM is unable to ligate FcγR and is often considered vasculoprotective. IgM aggravates ischemia-reperfusion injury, and solid-phase deposits of pure IgM, as seen with IgM-secreting neoplasms, are well known clinically to provoke vascular inflammation. We therefore examined the molecular mechanisms by which immunoglobulins can aggravate vascular inflammation, such as in atherosclerosis. We compared the ability of fluid- and solid-phase immunoglobulins to activate macrophages. Solid-phase immunoglobulins initiated prothrombotic and proinflammatory functions in human macrophages, including NF-κB p65 activation, H(2)O(2) secretion, macrophage-induced apoptosis, and tissue factor expression. Responses to solid-phase IgG (but not to IgM) were blocked by neutralizing antibodies to CD16 (FcγRIII), consistent with its known role. Macrophages from mice deficient in macrophage scavenger receptor A (SR-A; CD204) had absent IgM binding and no activation by solid-phase IgM. RNA interference-mediated knockdown of SR-A in human macrophages suppressed activation by solid-phase IgM. IgM binding to SR-A was demonstrated by both co-immunoprecipitation studies and the binding of fluorescently labeled IgM to SR-A-transfected cells. Immunoglobulins on solid-phase particles around macrophages were found in human plaques, increased in ruptured plaques compared with stable ones. These observations indicate that solid-phase IgM and IgG can activate macrophages and destabilize vulnerable plaques. Solid-phase IgM activates macrophages via a novel SR-A pathway.


Assuntos
Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ativação de Macrófagos/imunologia , Placa Aterosclerótica/imunologia , Receptores Depuradores Classe A/imunologia , Animais , Coagulação Sanguínea/fisiologia , Células Cultivadas , Proteínas do Sistema Complemento/imunologia , Doença da Artéria Coronariana/imunologia , Citotoxicidade Imunológica , Proteínas Ligadas por GPI/imunologia , Humanos , Peróxido de Hidrogênio/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Músculo Liso Vascular/imunologia , NF-kappa B/fisiologia , Desnaturação Proteica , Receptores Fc/imunologia , Receptores de IgG/imunologia , Transdução de Sinais/imunologia , Tromboplastina/fisiologia
7.
J Inflamm (Lond) ; 20(1): 11, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941580

RESUMO

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.

8.
Am J Respir Crit Care Med ; 184(7): 796-802, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965015

RESUMO

RATIONALE: There is increasing evidence for the presence of autoantibodies in chronic obstructive pulmonary disease (COPD). Chronic oxidative stress is an essential component in COPD pathogenesis and can lead to increased levels of highly reactive carbonyls in the lung, which could result in the formation of highly immunogenic carbonyl adducts on "self" proteins. OBJECTIVES: To determine the presence of autoantibodies to carbonyl-modified protein in patients with COPD and in a murine model of chronic ozone exposure. To assess the extent of activated immune responses toward carbonyl-modified proteins. METHODS: Blood and peripheral lung were taken from patients with COPD, age-matched smokers, and nonsmokers with normal lung function, as well as patients with severe persistent asthma. Mice were exposed to ambient air or ozone for 6 weeks. Antibody titers were measured by ELISA, activated compliment deposition by immunohistochemistry, and cellular activation by ELISA and fluorescence-activated cell sorter. MEASUREMENTS AND MAIN RESULTS: Antibody titer against carbonyl-modified self-protein was significantly increased in patients with Global Initiative for Chronic Obstructive Lung Disease stage III COPD compared with control subjects. Antibody levels inversely correlated with disease severity and showed a prevalence toward an IgG1 isotype. Deposition of activated complement in the vessels of COPD lung as well as autoantibodies against endothelial cells were also observed. Ozone-exposed mice similarly exhibited increased antibody titers to carbonyl-modified protein, as well as activated antigen-presenting cells in lung tissue and splenocytes sensitized to activation by carbonyl-modified protein. CONCLUSIONS: Carbonyl-modified proteins, arising as a result of oxidative stress, promote antibody production, providing a link by which oxidative stress could drive an autoimmune response in COPD.


Assuntos
Autoanticorpos/metabolismo , Estresse Oxidativo/imunologia , Carbonilação Proteica/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Animais , Asma/imunologia , Autoanticorpos/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Análise por Pareamento , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ozônio , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Índice de Gravidade de Doença , Fumar/efeitos adversos
9.
Am J Respir Cell Mol Biol ; 45(4): 746-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21297080

RESUMO

Hydrogen sulfide (H(2)S) is synthesized intracellularly by the enzymes cystathionine-γ-lyase and cystathionine-ß-synthase (CBS), and is proposed to be a gasotransmitter with effects in modulating inflammation and cellular proliferation. We determined a role of H(2)S in airway smooth muscle (ASM) function. ASM were removed from resection or transplant donor lungs and were placed in culture. Proliferation of ASM was induced by FCS and the proinflammatory cytokine, IL-1ß. Proliferation of ASM and IL-8 release were measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H(2)S "donors" inhibited this proliferation and IL-8 release. Methemoglobin, a scavenger of endogenous H(2)S, increased DNA synthesis induced by FCS and IL-1ß. In addition, methemoglobin increased IL-8 release induced by FCS, but not by IL-1ß, indicating a role for endogenous H(2)S in these systems. Inhibition of CBS, but not cystathionine-γ-lyase, reversed the inhibitory effect of H(2)S on proliferation and IL-8 release, indicating that this is dependent on CBS. CBS mRNA and protein expression were inhibited by H(2)S donors, and were increased by methemoglobin, indicating that CBS is the main enzyme responsible for endogenous H(2)S production. Finally, we found that exogenous H(2)S inhibited the phosphorylation of extracellular signal-regulated kinase-1/2 and p38, which could represent a mechanism by which H(2)S inhibited cellular proliferation and IL-8 release. In summary, H(2)S production provides a novel mechanism for regulation of ASM proliferation and IL-8 release. Therefore, regulation of H(2)S may represent a novel approach to controlling ASM proliferation and cytokine release that is found in patients with asthma.


Assuntos
Brônquios/metabolismo , Proliferação de Células , Sulfeto de Hidrogênio/metabolismo , Interleucina-8/metabolismo , Miócitos de Músculo Liso/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Humanos , Interleucina-1beta/metabolismo , Metemoglobina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Compostos Organotiofosforados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Soro/metabolismo , Sulfetos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Am J Physiol Lung Cell Mol Physiol ; 300(5): L691-700, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21355040

RESUMO

Oxidative stress plays a role in the pathophysiology of emphysema through the activation of tissue proteases and apoptosis. We examined the effects of ozone exposure by exposing BALB/c mice to either a single 3-h exposure or multiple exposures over 3 or 6 wk, with two 3-h exposures per week. Compared with air-exposed mice, the increase in neutrophils in bronchoalveolar lavage fluid and lung inflammation index was greatest in mice exposed for 3 and 6 wk. Lung volumes were increased in 3- and 6-wk-exposed mice but not in single-exposed. Alveolar space and mean linear intercept were increased in 6- but not 3-wk-exposed mice. Caspase-3 and apoptosis protease activating factor-1 immunoreactivity was increased in the airway and alveolar epithelium and macrophages of 3- and 6-wk-exposed mice. Interleukin-13, keratinocyte chemoattractant, caspase-3, and IFN-γ mRNA were increased in the 6-wk-exposed group, but heme oxygenase-1 (HO-1) mRNA decreased. matrix metalloproteinase-12 (MMP-12) and caspase-3 protein expression increased in lungs of 6-wk-exposed mice. Collagen area increased and epithelial area decreased in airway wall at 3- and 6-wk exposure. Exposure of mice to ozone for 6 wk induced a chronic inflammatory process, with alveolar enlargement and damage linked to epithelial apoptosis and increased protease expression.


Assuntos
Pneumonia/fisiopatologia , Enfisema Pulmonar/fisiopatologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Caspase 3/metabolismo , Perfilação da Expressão Gênica , Heme Oxigenase-1/metabolismo , Pulmão/fisiopatologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Ozônio , Pneumonia/patologia , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/induzido quimicamente , Fumar/efeitos adversos
11.
J Allergy Clin Immunol ; 125(5): 1146-53, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20381852

RESUMO

BACKGROUND: Glucocorticoid function is markedly impaired in the lungs of patients with chronic obstructive pulmonary disease (COPD). This reduction in glucocorticoid sensitivity might be due to an oxidant-mediated increase in phosphoinositol 3-kinase (PI3K) delta signaling. OBJECTIVE: We sought to determine the role of PI3Kdelta in the reduced glucocorticoid responsiveness in patients with COPD. METHODS: Peripheral lung tissue was obtained from 24 patients with COPD, 20 age-matched smokers with normal lung function, and 13 nonsmokers. Peripheral blood monocytes were isolated from 9 patients with COPD and 7 age-matched smokers with normal lung function and from healthy volunteers. RESULTS: The expressions of PI3Kdelta and Akt phosphorylation were increased in macrophages from patients with COPD compared with those from control groups of age-matched smokers and nonsmokers. In vitro oxidative stress induced phosphorylation of Akt in monocytes and macrophages, which was abolished by means of selective inhibition of PI3Kdelta but not PI3Kgamma. Dexamethasone was less effective at repressing LPS-induced GM-CSF and CXC motif chemokine 8 release in blood monocytes from patients with COPD compared with age-matched smokers. This reduced sensitivity was reversed by inhibition of PI3Kdelta but not PI3Kgamma. CONCLUSION: PI3Kdelta expression and signaling is increased in the lungs of patients with COPD. Selective inhibition of PI3Kdelta might restore glucocorticoid function in patients with COPD and might therefore present a potential therapeutic target.


Assuntos
Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Idoso , Dexametasona/metabolismo , Feminino , Glucocorticoides/metabolismo , Humanos , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Transdução de Sinais , Fumar/imunologia , Fumar/fisiopatologia , Resultado do Tratamento
12.
Bioorg Med Chem Lett ; 20(3): 1219-24, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20031406

RESUMO

The synthesis of two series of 4'-aza-carbocyclic nucleosides are described in which the 4'-substituent is either a reversed amide, relative to the carboxamide of NECA, or an N-bonded heterocycle. Using established purine substitution patterns, potent and selective examples of agonists of the human adenosine A(2A) receptor have been identified from both series. The propionamides 14-18 and the 4-hydroxymethylpyrazole 32 were determined to be the most potent and selective examples from the 4'-reversed amide and 4'-N-bonded heterocyclic series, respectively.


Assuntos
Agonistas do Receptor A2 de Adenosina , Compostos Aza/síntese química , Ácidos Carboxílicos/síntese química , Nucleosídeos/síntese química , Nucleotídeos de Pirimidina/síntese química , Animais , Compostos Aza/metabolismo , Compostos Aza/farmacologia , Células CHO , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacologia , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Nucleotídeos de Pirimidina/metabolismo , Nucleotídeos de Pirimidina/farmacologia , Ratos , Receptor A2A de Adenosina/metabolismo
13.
Am J Respir Crit Care Med ; 179(7): 542-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19164702

RESUMO

RATIONALE: There is an increasing prevalence of reduced responsiveness to glucocorticoid therapy in severe asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanism of this remains unknown. Recent studies have shown that histone deacetylase activity, which is critical to glucocorticoid function, is altered by oxidant stress and may be involved in the development of glucocorticoid insensitivity. OBJECTIVES: To determine the role of phosphoinositol-3-kinase (PI3K) in the development of cigarette smoke-induced glucocorticoid insensitivity. METHODS: Wild-type, PI3Kgamma knock-out and PI3Kdelta kinase dead knock-in transgenic mice were used in a model of cigarette smoke-induced glucocorticoid insensitivity. Peripheral lung tissue was obtained from six healthy nonsmokers, nine smokers with normal lung function, and eight patients with COPD. MEASUREMENTS AND MAIN RESULTS: In vitro oxidative stress activates PI3K and induced a relative glucocorticoid resistance, which is restored by PI3K inhibition. In vivo, cigarette smoke exposure in mice increased tyrosine nitration of histone deacetylase 2 in the lung, correlating with reduced histone deacetylase 2 activity and reduced glucocorticoid function. Histone deacetylase 2 activity and the antiinflammatory effects of glucocorticoids were restored in PI3Kdelta kinase dead knock-in but not PI3Kgamma knock-out smoke-exposed mice compared with wild type mice, correlating with reduced histone deacetylase 2 tyrosine nitration. Glucocorticoid receptor expression was significantly reduced in smoke-exposed mice, in smokers with normal lung function, and in patients with COPD. CONCLUSIONS: These data show that therapeutic inhibition of PI3Kdelta may restore glucocorticoid function in oxidative stress-induced glucocorticoid insensitivity.


Assuntos
Glucocorticoides/administração & dosagem , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fumar/efeitos adversos , Fumar/imunologia , Administração por Inalação , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases , Resistência a Medicamentos , Feminino , Histona Desacetilase 2 , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo
14.
BMJ Open Respir Res ; 7(1)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208304

RESUMO

INTRODUCTION: Cigarette smoking and oxidative stress are common risk factors for the multi-morbidities associated with chronic obstructive pulmonary disease (COPD). Elevated levels of advanced glycation endproducts (AGE) increase the risk of cardiovascular disease (CVD) comorbidity and mortality. The enzyme fructosamine-3-kinase (FN3K) reduces this risk by lowering AGE levels. METHODS: The distribution and expression of FN3K protein in lung tissues from stable COPD and control subjects, as well as an animal model of COPD, was assessed by immunohistochemistry. Serum FN3K protein and AGE levels were assessed by ELISA in patients with COPD exacerbations receiving metformin. Genetic variants within the FN3K and FN3K-RP genes were evaluated for associations with cardiorespiratory function in the Subpopulations and Intermediate Outcome Measures in COPD Study cohort. RESULTS: This pilot study demonstrates that FN3K expression in the blood and human lung epithelium is distributed at either high or low levels irrespective of disease status. The percentage of lung epithelial cells expressing FN3K was higher in control smokers with normal lung function, but this induction was not observed in COPD patients nor in a smoking model of COPD. The top five nominal FN3K polymorphisms with possible association to decreased cardiorespiratory function (p<0.008-0.02), all failed to reach the threshold (p<0.0028) to be considered highly significant following multi-comparison analysis. Metformin enhanced systemic levels of FN3K in COPD subjects independent of their high-expression or low-expression status. DISCUSSION: The data highlight that low and high FN3K expressors exist within our study cohort and metformin induces FN3K levels, highlighting a potential mechanism to reduce the risk of CVD comorbidity and mortality.


Assuntos
Doenças Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Comorbidade , Humanos , Fosfotransferases (Aceptor do Grupo Álcool) , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética
16.
Am J Respir Cell Mol Biol ; 39(3): 312-23, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18421014

RESUMO

Oxidative stress as a result of cigarette smoking is an important etiologic factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), a chronic steroid-insensitive inflammatory disease of the airways. Histone deacetylase-2 (HDAC2), a critical component of the corticosteroid anti-inflammatory action, is impaired in lungs of patients with COPD and correlates with disease severity. We demonstrate here that curcumin (diferuloylmethane), a dietary polyphenol, at nanomolar concentrations specifically restores cigarette smoke extract (CSE)- or oxidative stress-impaired HDAC2 activity and corticosteroid efficacy in vitro with an EC(50) of approximately 30 nM and 200 nM, respectively. CSE caused a reduction in HDAC2 protein expression that was restored by curcumin. This decrease in HDAC2 protein expression was reversed by curcumin even in the presence of cycloheximide, a protein synthesis inhibitor. The proteasomal inhibitor, MG132, also blocked CSE-induced HDAC2 degradation, increasing the levels of ubiquitinated HDAC2. Biochemical and gene chip analysis indicated that curcumin at concentrations up to 1 muM propagates its effect via antioxidant-independent mechanisms associated with the phosphorylation-ubiquitin-proteasome pathway. Thus curcumin acts at a post-translational level by maintaining both HDAC2 activity and expression, thereby reversing steroid insensitivity induced by either CSE or oxidative stress in monocytes. Curcumin may therefore have potential to reverse steroid resistance, which is common in patients with COPD and asthma.


Assuntos
Corticosteroides/fisiologia , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Curcumina/farmacologia , Histona Desacetilases/metabolismo , Monócitos/efeitos dos fármacos , Oxidantes/farmacologia , Proteínas Repressoras/metabolismo , Fumaça/efeitos adversos , Corticosteroides/farmacologia , Cicloeximida/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Histona Desacetilase 2 , Inibidores de Histona Desacetilases , Humanos , Monócitos/enzimologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Inibidores da Síntese de Proteínas/farmacologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Proteínas Repressoras/antagonistas & inibidores , Fumar/efeitos adversos , Nicotiana , Células U937
17.
Biochem Biophys Res Commun ; 377(3): 797-802, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18951874

RESUMO

Oxidative stress is a central factor in many chronic inflammatory diseases such as severe asthma and chronic obstructive pulmonary disease (COPD). Oxidative stress reduces the anti-inflammatory corticosteroid action and may therefore contribute to the relative corticosteroid insensitivity seen in these diseases. Low concentrations of theophylline can restore the anti-inflammatory action of corticosteroids in oxidant exposed cells, however the mechanism remains unknown. Here, we demonstrate that a low concentration of theophylline restores corticosteroid repression of pro-inflammatory mediator release and histone acetylation in oxidant exposed cells. Global gene expression analysis shows that theophylline regulates distinct pathways in naïve and oxidant exposed cells and reverses oxidant mediated modulated of pathways. Furthermore, quantitative chemoproteomics revealed that theophylline has few high affinity targets in naive cells but an elevated affinity in oxidant stressed cells. In conclusion, oxidative stress alters theophylline binding profile and gene expression which may result in restoration of corticosteroid function.


Assuntos
Corticosteroides/farmacologia , Anti-Inflamatórios/farmacologia , Broncodilatadores/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Estresse Oxidativo , Inibidores de Fosfodiesterase/farmacologia , Teofilina/farmacologia , Acetilação , Linhagem Celular , Dexametasona/farmacologia , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Oxidantes/farmacologia , Proteômica
18.
Chest ; 153(6): 1424-1431, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29126842

RESUMO

COPD is a leading cause of morbidity and mortality worldwide. Long-term cigarette smoking is the cause of > 90% of COPD cases in Westernized countries. However, only a fraction of chronic heavy smokers develop symptomatic COPD by age 80. COPD is characterized by an abnormal immune response in the lower airways, and its progression is associated with infiltration of the lung by innate and adaptive inflammatory immune cells that form lymphoid follicles. There is growing evidence that both cellular- and antibody-mediated autoimmunity has a fundamental role in the pathogenesis of stable COPD. In particular, carbonyl-modified proteins may help to drive autoimmunity in COPD and cause the characteristic small airways abnormalities and even contribute to the pathogenesis of pulmonary emphysema. Although direct, indirect, and circumstantial evidence of a role for autoimmunity in stable patients with COPD has been identified, no cause-and-effect relationship between autoimmunity and the mechanisms of COPD has been firmly established in man. As such, the potential contribution of an autoimmune response to the pathogenesis of COPD exacerbation is still being investigated and represents an area of active research. Many drugs targeting autoimmune responses are already available, and the results of controlled clinical trials are awaited with great interest. The potential for measuring specific serum autoantibodies as biomarkers to predict clinical phenotypes or progression of stable COPD is promising.


Assuntos
Autoanticorpos/sangue , Autoimunidade/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Biomarcadores/sangue , Progressão da Doença , Humanos , Doença Pulmonar Obstrutiva Crônica/sangue
19.
Diabetes ; 67(1): 131-136, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066600

RESUMO

The phenomenon of a discrepancy between glycated hemoglobin levels and other indicators of average glycemia may be due to many factors but can be measured as the glycation gap (GGap). This GGap is associated with differences in complications in patients with diabetes and may possibly be explained by dissimilarities in deglycation in turn leading to altered production of advanced glycation end products (AGEs). We hypothesized that variations in the level of the deglycating enzyme fructosamine-3-kinase (FN3K) might be associated with the GGap. We measured erythrocyte FN3K concentrations and enzyme activity in a population dichotomized for a large positive or negative GGap. FN3K protein was higher and we found a striking threefold greater activity (323%) at any given FN3K protein level in the erythrocytes of the negative-GGap group compared with the positive-GGap group. This was associated with lower AGE levels in the negative-GGap group (79%), lower proinflammatory adipokines (leptin-to-adiponectin ratio) (73%), and much lower prothrombotic PAI-1 levels (19%). We conclude that FN3K may play a key role in the GGap and thus diabetes complications such that FN3K may be a potential predictor of the risk of diabetes complications. Pharmacological modifications of its activity may provide a novel approach to their prevention.


Assuntos
Diabetes Mellitus/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adipocinas/metabolismo , Adiponectina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Glicemia/metabolismo , Feminino , Hemoglobinas Glicadas/metabolismo , Produtos Finais de Glicação Avançada , Glicosilação , Humanos , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo
20.
ERJ Open Res ; 4(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29546046

RESUMO

For another year, high-quality research studies from around the world transformed the annual ERS International Congress into a vivid platform to discuss trending research topics, to produce new research questions and to further push the boundaries of respiratory medicine and science. This article reviews only some of the high-quality research studies on asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis and chronic cough that were presented during the congress through the Airway Diseases Assembly (ERS Assembly 5) and places them into the context of current knowledge and research challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA