Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Educ Inf Technol (Dordr) ; : 1-48, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37361814

RESUMO

The novelty of this study is in developing a conceptual model for predicting the non-linear relationships between human-computer interaction factors and ease of use and usefulness of collaborative web-based learning or e-learning. Ten models (logarithmic, inverse, quadratic, cubic, compound, power, s-curve, growth, exponential, and logistic) were examined as functions of effects compared to linear relationships to see which was the most appropriate, based on R2, adjusted R2 and SEE values. To answer the addressed questions, the researcher surveyed 103 students from Kadir Has University about the perceived interface and interactivity of e-learning. The results show that most of the hypotheses formulated for this purpose have been proven. Our analysis shows that cubic models (the relationship between ease of use and usefulness, visual design, course environment, learner-interface interactivity, and course evaluation system and ease of use), quadratic models (the relationship between visual design, and system quality and usefulness, course structure and content, course environment, and system quality and ease of use), logarithmic model (the relationship between course evaluation system and usefulness), and s-curve models (learner-interface interactivity, navigation, and course structure and content and usefulness) performed better in the description for the correlations. Supplementary Information: The online version contains supplementary material available at 10.1007/s10639-023-11635-6.

2.
Gels ; 9(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998996

RESUMO

The use of transparent conductive oxides in optoelectronics created a revolution where new-generation materials with high transmittance, low sheet resistance values, durability, and portability can be achieved without decreasing efficiency or increasing costs. Transparent ZnO/MoS2 sandwich-structured conductive composite films were produced in this study via the sol-gel method, which is considered the most efficient method due to its simple process and low cost. The crystal structure properties of ZnO/MoS2 were characterized via X-ray diffraction (XRD) patterns. The crystal sizes of ZnO films doped with different amounts of MoS2 were determined. A UV-visible absorption spectrometer was used to perform the spectroscopic analysis of the film. The area under the absorption curve and the full width of the half-maxima of absorbance data were calculated. Using these values, the optimum amount of MoS2 was determined for the best additive distribution. In addition, in order to determine the best transparent conductive material, resistance values measured via the four-point probe method were compared for different MoS2 additive amounts. The optical and electrical characterizations of transparent ZnO/MoS2 conductive oxide films were investigated. According to the parameters obtained via UV-vis spectroscopy, XRD, and four-point probe measurements, the most effective dispersion that exhibits a low width ratio and high resonance ratio was found for ZnO/MoS2 with a doping amount of 4 mg, the crystallite size of the films was found to be within the range of 21.5 and 24.6 nm, and these observations demonstrated a figure-of-merit value of more than 4.8 × 10-2 with respect to these sandwich-structured films. Compared to the values of previous studies on various transparent ZnO-doped conductive oxide materials, it is possible to claim that these new films have a structure that is very similar to the transparent conductivity characteristics of other films, and they may even be superior relative to some MoS2 amounts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA