Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454606

RESUMO

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , AVC Isquêmico , Lipossomos , Nanopartículas , Molécula 1 de Adesão de Célula Vascular , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Animais , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Nanopartículas/química , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Humanos
2.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005712

RESUMO

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Assuntos
Anticorpos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Encefalite/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Nanomedicina/métodos , Animais , Barreira Hematoencefálica/imunologia , Encefalite/genética , Encefalite/imunologia , Endotélio Vascular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Camundongos , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Trombomodulina/genética , Trombomodulina/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
3.
Bioconjug Chem ; 29(1): 56-66, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29200285

RESUMO

The conjugation of antibodies to drugs and drug carriers improves delivery to target tissues. Widespread implementation and effective translation of this pharmacologic strategy awaits the development of affinity ligands capable of a defined degree of modification and highly efficient bioconjugation without loss of affinity. To date, such ligands are lacking for the targeting of therapeutics to vascular endothelial cells. To enable site-specific, click-chemistry conjugation to therapeutic cargo, we used the bacterial transpeptidase, sortase A, to attach short azidolysine containing peptides to three endothelial-specific single chain antibody fragments (scFv). While direct fusion of a recognition motif (sortag) to the scFv C-terminus generally resulted in low levels of sortase-mediated modification, improved reaction efficiency was observed for one protein, in which two amino acids had been introduced during cloning. This prompted insertion of a short, semi-rigid linker between scFv and sortag. The linker significantly enhanced modification of all three proteins, to the extent that unmodified scFv could no longer be detected. As proof of principle, purified, azide-modified scFv was conjugated to the antioxidant enzyme, catalase, resulting in robust endothelial targeting of functional cargo in vitro and in vivo.


Assuntos
Química Click/métodos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacocinética , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/administração & dosagem , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Molécula-1 de Adesão Celular Endotelial a Plaquetas/administração & dosagem , Molécula-1 de Adesão Celular Endotelial a Plaquetas/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/farmacocinética , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/metabolismo , Distribuição Tecidual
4.
Nanomedicine ; 13(4): 1495-1506, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28065731

RESUMO

Inflamed organs display marked spatial heterogeneity of inflammation, with patches of inflamed tissue adjacent to healthy tissue. To investigate how nanocarriers (NCs) distribute between such patches, we created a mouse model that recapitulates the spatial heterogeneity of the inflammatory lung disease ARDS. NCs targeting the epitope PECAM strongly accumulated in the lungs, but were shunted away from inflamed lung regions due to hypoxic vasoconstriction (HVC). In contrast, ICAM-targeted NCs, which had lower whole-lung uptake than PECAM/NCs in inflamed lungs, displayed markedly higher NC levels in inflamed regions than PECAM/NCs, due to increased regional ICAM. Regional HVC, epitope expression, and capillary leak were sufficient to predict intra-organ of distribution of NCs, antibodies, and drugs. Importantly, these effects were not observable with traditional spatially-uniform models of ARDS, nor when examining only whole-organ uptake. This study underscores how examining NCs' intra-organ distribution in spatially heterogeneous animal models can guide rational NC design.


Assuntos
Portadores de Fármacos/farmacocinética , Epitopos/imunologia , Inflamação/patologia , Pulmão/patologia , Nanopartículas/química , Animais , Anticorpos/química , Portadores de Fármacos/química , Epitopos/química , Hipóxia/fisiopatologia , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Vasoconstrição
5.
Langmuir ; 31(44): 12177-86, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26484937

RESUMO

Surface plasmon resonance (SPR) was used in this research to investigate the targeting efficacy (i.e., the binding affinity) of antibody-modified liposomes. The results indicated that liposomes modified by targeting antibodies exhibited an increase in apparent binding affinity, a result attributed to the avidity effect. More specifically, the targeting effect improved as the surface density of the targeting antibody increased, an increase primarily attributed to the decrease of the dissociation rate. However, this trend stopped when the surface density reached a threshold of approximately 1.5 × 10(8) antibody/mm(2). This surface density was found to be quite consistent regardless of the liposome size and the type of targeting antibody. In addition, a traditional cell binding experiment was conducted to confirm the saturation point obtained from SPR.


Assuntos
Anticorpos/imunologia , Lipossomos , Relação Dose-Resposta Imunológica , Ressonância de Plasmônio de Superfície
6.
J Nanosci Nanotechnol ; 15(8): 5501-11, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369109

RESUMO

Nanotechnology is one of the most exciting disciplines and it incorporates physics, chemistry, materials science, and biology. It can be applied to design cancer medicines with improved therapeutic indices. At the basic level, carbon nanotubes (CNTs) and graphene are sp2 carbon nanomaterials. Their unique physical and chemical properties make them interesting candidates of research in a wide range of areas including biological systems and different diseases. Recent research has been focused on exploring the potential of the CNTs as a carrier or vehicle for intracellular transport of drugs, proteins, and targeted genes in vitro and in vivo. Several research groups are actively involved to find out a functional CNT carrier capable of transporting targeted drug molecules in animal models with least toxicity. Current investigations are also focused on graphene, an allotrope of carbon, which appears to be a promising agent for successful delivery of biomolecules in various animal models. But potential clinical implementations of CNTs are still hampered by distinctive barriers such as poor bioavailability and intrinsic toxicity, which pose difficulties in tumor targeting and penetration as well as in improving therapeutic outcome. This article presents recent progresses in the design and evaluation of closely related CNTs for experimental cancer therapy and explores their implications in bringing nanomedicines into the clinics.


Assuntos
Antineoplásicos/administração & dosagem , Carbono/administração & dosagem , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanotubos de Carbono/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Difusão , Humanos , Nanocápsulas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula
7.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398465

RESUMO

After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract: Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.

8.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432926

RESUMO

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Assuntos
Sistemas de Liberação de Medicamentos , Pulmão , Camundongos , Animais , Pulmão/metabolismo , Encéfalo/metabolismo , Lipossomos/metabolismo , Leucócitos/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
9.
J Control Release ; 344: 50-61, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34953981

RESUMO

Current nucleoside-modified RNA lipid nanoparticle (modmRNA-LNP) technology has successfully paved the way for the highest clinical efficacy data from next-generation vaccinations against SARS-CoV-2 during the COVID-19 pandemic. However, such modmRNA-LNP technology has not been characterized in common pre-existing inflammatory or immune-challenged conditions, raising the risk of adverse clinical effects when administering modmRNA-LNPs in such cases. Herein, we induce an acute-inflammation model in mice with lipopolysaccharide (LPS) intratracheally (IT), 1 mg kg-1, or intravenously (IV), 2 mg kg-1, and then IV administer modmRNA-LNP, 0.32 mg kg-1, after 4 h, and screen for inflammatory markers, such as pro-inflammatory cytokines. ModmRNA-LNP at this dose caused no significant elevation of cytokine levels in naive mice. In contrast, shortly after LPS immune stimulation, modmRNA-LNP enhanced inflammatory cytokine responses, Interleukin-6 (IL-6) in serum and Macrophage Inflammatory Protein 2 (MIP-2) in liver significantly. Our report identifies this phenomenon as inflammation exacerbation (IE), which was proven to be specific to the LNP, acting independent of mRNA cargo, and was demonstrated to be time- and dose-dependent. Macrophage depletion as well as TLR3 -/- and TLR4-/- knockout mouse studies revealed macrophages were the immune cells involved or responsible for IE. Finally, we show that pretreatment with anti-inflammatory drugs, such as corticosteroids, can partially alleviate IE response in mice. Our findings characterize the importance of LNP-mediated IE phenomena in gram negative bacterial inflammation, however, the generalizability of modmRNA-LNP in other forms of chronic or acute inflammatory and immune contexts needs to be addressed.


Assuntos
COVID-19 , Nanopartículas , Animais , Humanos , Inflamação , Lipopolissacarídeos , Lipossomos , Camundongos , Pandemias , RNA Mensageiro/genética , SARS-CoV-2
10.
Nat Nanotechnol ; 17(1): 86-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34795440

RESUMO

This study shows that the supramolecular arrangement of proteins in nanoparticle structures predicts nanoparticle accumulation in neutrophils in acute lung inflammation (ALI). We observed homing to inflamed lungs for a variety of nanoparticles with agglutinated protein (NAPs), defined by arrangement of protein in or on the nanoparticles via hydrophobic interactions, crosslinking and electrostatic interactions. Nanoparticles with symmetric protein arrangement (for example, viral capsids) had no selectivity for inflamed lungs. Flow cytometry and immunohistochemistry showed NAPs have tropism for pulmonary neutrophils. Protein-conjugated liposomes were engineered to recapitulate NAP tropism for pulmonary neutrophils. NAP uptake in neutrophils was shown to depend on complement opsonization. We demonstrate diagnostic imaging of ALI with NAPs; show NAP tropism for inflamed human donor lungs; and show that NAPs can remediate pulmonary oedema in ALI. This work demonstrates that structure-dependent tropism for neutrophils drives NAPs to inflamed lungs and shows NAPs can detect and treat ALI.


Assuntos
Inflamação/patologia , Pulmão/patologia , Nanopartículas/química , Neutrófilos/patologia , Proteínas/química , Doença Aguda , Aglutinação/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Reagentes de Ligações Cruzadas/química , Dextranos/química , Humanos , Lipopolissacarídeos , Lipossomos , Pulmão/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Neutrófilos/efeitos dos fármacos , Proteínas Opsonizantes/metabolismo , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
11.
Adv Drug Deliv Rev ; 157: 96-117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32579890

RESUMO

The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.


Assuntos
Sistemas de Liberação de Medicamentos , Endotélio Vascular/metabolismo , Doenças Vasculares/tratamento farmacológico , Animais , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Humanos , Inflamação/tratamento farmacológico , Nanomedicina , Nanopartículas
12.
J Control Release ; 301: 54-61, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30871995

RESUMO

New advances in intra-arterial (IA) catheters offer clinically proven local interventions in the brain. Here we tested the effect of combining local IA delivery and vascular immunotargeting. Microinjection of tumor necrosis factor alpha (TNFα) in the brain parenchyma causes cerebral overexpression of Inter-Cellular Adhesion Molecule-1 (ICAM-1) in mice. Systemic intravenous injection of ICAM-1 antibody (anti-ICAM-1) and anti-ICAM-1/liposomes provided nearly an order of magnitude higher uptake in the inflamed vs normal brain (from ~0.1 to 0.8%ID/g for liposomes). Local injection of anti-ICAM-1 and anti-ICAM-1/liposomes via carotid artery catheter provided an additional respective 2-fold and 5-fold elevation of uptake in the inflamed brain vs levels attained by IV injection. The uptake in the inflamed brain of respective untargeted IgG counterparts was markedly lower (e.g., uptake of anti-ICAM-1/liposomes was 100-fold higher vs IgG/liposomes). These data affirm the specificity of the combined effect of the first pass and immunotargeting. Intravital real-time microscopy via cranial window revealed that anti-ICAM-1/liposomes, but not IgG/liposomes bind to the lumen of blood vessels in the inflamed brain within minutes after injection. This straightforward framework provides the basis for translational efforts towards local vascular drug targeting to the brain.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Encéfalo/metabolismo , Encefalite/metabolismo , Molécula 1 de Adesão Intercelular/imunologia , Animais , Anticorpos Monoclonais/farmacocinética , Transporte Biológico , Encéfalo/irrigação sanguínea , Encefalite/induzido quimicamente , Lipossomos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nanoestruturas/administração & dosagem , Poliestirenos/administração & dosagem , Poliestirenos/farmacocinética , Fator de Necrose Tumoral alfa
13.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194909

RESUMO

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Assuntos
Adenocarcinoma de Pulmão/patologia , Técnicas de Cultura de Células , Engenharia Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Técnicas Analíticas Microfluídicas , Adenocarcinoma de Pulmão/irrigação sanguínea , Humanos , Hidrogéis/química , Microcirculação
14.
Drug Deliv Transl Res ; 8(4): 883-902, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29282646

RESUMO

Vascular endothelial cells represent an important therapeutic target in many pathologies, including inflammation, oxidative stress, and thrombosis; however, delivery of drugs to this site is often limited by the lack of specific affinity of therapeutics for these cells. Selective delivery of both small molecule drugs and therapeutic proteins to the endothelium has been achieved through the use of targeting ligands, such as monoclonal antibodies, directed against endothelial cell surface markers, particularly cell adhesion molecules (CAMs). Careful selection of target molecules and targeting agents allows for precise delivery to sites of inflammation, thereby maximizing therapeutic drug concentrations at the site of injury. A good understanding of the physiological and pathological determinants of drug and drug carrier pharmacokinetics and biodistribution may allow for a priori identification of optimal properties of drug carrier and targeting agent. Targeted delivery of therapeutics such as antioxidants and antithrombotic agents to the injured endothelium has shown efficacy in preclinical models, suggesting the potential for translation into clinical practice. As with all therapeutics, demonstration of both efficacy and safety are required for successful clinical implementation, which must be considered not only for the individual components (drug, targeting agent, etc.) but also for the sum of the parts (e.g., the drug delivery system), as unexpected toxicities may arise with complex delivery systems. While the use of endothelial targeting has not been translated into the clinic to date, the preclinical results summarized here suggest that there is hope for successful implementation of these agents in the years to come.


Assuntos
Sistemas de Liberação de Medicamentos , Endotélio/metabolismo , Animais , Antioxidantes/administração & dosagem , Produtos Biológicos/farmacocinética , Humanos
15.
Sci Rep ; 8(1): 1510, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367646

RESUMO

Targeting drugs to endothelial cells has shown the ability to improve outcomes in animal models of inflammatory, ischemic and thrombotic diseases. Previous studies have revealed that certain pairs of ligands (antibodies and antibody fragments) specific for adjacent, but distinct, epitopes on PECAM-1 enhance each other's binding, a phenomenon dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL. This discovery has been leveraged to enable simultaneous delivery of multiple therapeutics to the vascular endothelium. Given the known role of PECAM-1 in promoting endothelial quiescence and cell junction integrity, we sought here to determine if CEPAL might induce unintended vascular effects. Using a combination of in vitro and in vivo techniques and employing human and mouse endothelial cells under physiologic and pathologic conditions, we found only modest or non-significant effects in response to antibodies to PECAM-1, whether given solo or in pairs. In contrast, these methods detected significant elevation of endothelial permeability, pro-inflammatory vascular activation, and systemic cytokine release following antibody binding to the related endothelial junction protein, VE-Cadherin. These studies support the notion that PECAM-1-targeted CEPAL provides relatively well-tolerated endothelial drug delivery. Additionally, the analysis herein creates a template to evaluate potential toxicities of vascular-targeted nanoparticles and protein therapeutics.


Assuntos
Anticorpos/metabolismo , Células Endoteliais/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Ligação Proteica
16.
Pulm Circ ; 8(1): 2045893217752329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29261028

RESUMO

The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk-benefit ratio and safety-parameters one should keep in mind when developing a translational therapeutic.

17.
J Control Release ; 272: 1-8, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29292038

RESUMO

Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anticorpos/administração & dosagem , Proteínas de Transporte/imunologia , Proteínas de Membrana/imunologia , Superóxido Dismutase/administração & dosagem , Animais , Cavéolas/metabolismo , Células Cultivadas , Citocinas/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL
18.
J Control Release ; 291: 106-115, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30336167

RESUMO

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.


Assuntos
Apolipoproteínas E/metabolismo , Sistemas de Liberação de Medicamentos , Endotélio Vascular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/administração & dosagem , Administração Intravenosa , Animais , Linhagem Celular , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoconjugados/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/farmacocinética , Distribuição Tecidual
19.
Biomaterials ; 185: 348-359, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273834

RESUMO

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.


Assuntos
Cavéolas/metabolismo , Portadores de Fármacos/metabolismo , Ferritinas/metabolismo , Nanopartículas/metabolismo , Superóxido Dismutase/administração & dosagem , Animais , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos , Imunoconjugados/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/farmacocinética
20.
Adv Mater ; 30(32): e1802373, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956381

RESUMO

Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.


Assuntos
Nanopartículas , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Polietilenoglicóis , Polietilenoimina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA