Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 232(1): 123-133, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34185883

RESUMO

Wood carbon (C) concentration is a key wood trait that varies widely among tree species, but our understanding of the factors governing this trait is limited, despite reason to hypothesize that wood C varies systematically across environmental gradients. We compiled a novel database of 1145 geo-referenced wood C observations from 415 species, to elucidate climate correlates of wood C concentrations, and test if these relationships differ across tissue types and major taxonomic divisions (i.e. angiosperms vs gymnosperms). Climate variables, including mean annual temperature (MAT) and precipitation and temperature seasonality, are significantly correlated with wood C concentrations. Relationships between wood C and these variables differ across tissue types and taxonomic divisions, yet there is a negative relationship between wood C and MAT that exists across all tissues and species groups. Wood C concentrations in trees are influenced by climate, with experimental evidence (albeit scant) indicating that climate-driven changes in lignin concentrations likely govern these relationships. Our study presents among the first lines of evidence indicating that wood C concentrations are correlated with environmental conditions, thereby enhancing our understanding of the potential adaptive significance of wood C variation in trees.


Assuntos
Magnoliopsida , Árvores , Carbono , Lignina , Madeira
2.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297816

RESUMO

Variability in traits forming the Leaf Economics Spectrum (LES) among and within crop species plays a key role in governing agroecosystem processes. However, studies evaluating the extent, causes, and consequences of within-species variation in LES traits for some of the world's most common crops remain limited. This study quantified variations in nine leaf traits measured across 90 vines of five common wine grape (Vitis vinifera L.) varieties at two growth stages (post-flowering and veraison). Grape traits in these varieties covary along an intraspecific LES, in patterns similar to those documented in wild plants. Across the five varieties evaluated here, high rates of photosynthesis (A) and leaf nitrogen (N) concentrations were coupled with low leaf mass per area (LMA), whereas the opposite suite of traits defined the "resource-conserving end" of this intraspecific LES in grape. Variety identity was the strongest predictor of leaf physiological (A) and morphological traits (i.e., leaf area and leaf mass), whereas leaf chemical traits and LMA were best explained by growth stage. All five varieties expressed greater resource-conserving trait syndromes (i.e., higher LMA, lower N, and lower Amass) later in the growing season. Traits related to leaf hydraulics, including instantaneous water-use efficiency (WUE), were unrelated to LES and other resource capture traits, and were better explained by spatial location. These results highlight the relative contributions of genetic, developmental, and phenotypic factors in structuring trait variation in the five wine grape varieties evaluated here, and point to a key role of domestication in governing trait relationships in the world's crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA