Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 59(25): 2351-2358, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32515940

RESUMO

Blastochloris tepida is a newly described thermophilic purple bacterium containing bacteriochlorophyll b. Using purified light-harvesting 1 reaction center (LH1-RC) core complexes from Blc. tepida, we compared the biochemical, spectroscopic, and thermal denaturation properties of these complexes with those of its mesophilic counterpart, Blc. viridis. Besides their growth temperature optima, a striking difference between the two species was seen in the carotenoid composition of their LH1-RC complexes. The more thermostable Blc. tepida complex contained more carotenoids with longer conjugation lengths (n > 9), such as lycopenes (n = 11), and had a total carotenoid content significantly higher than that of the Blc. viridis complex, irrespective of the light intensity used for growth. The thermostability of LH1-RCs from both Blc. tepida and Blc. viridis decreased significantly in cells grown in the presence of diphenylamine, a compound that inhibits the formation of highly conjugated carotenoids. In contrast to the thermophilic purple bacterium Thermochromatium tepidum, where Ca2+ is essential for LH1-RC thermostability, Ca2+ neither was present in nor had any effect on the thermostability of the Blc. tepida LH1-RC. These results point to a mechanism that carotenoids with elongated conjugations enhance hydrophobic interactions with proteins in the Blc. tepida LH1-RC, thereby allowing the complexes to withstand thermal denaturation. This conclusion is bolstered by a structural model of the Blc. tepida LH1-RC and is the first example of photocomplex thermostability being linked to a carotenoid-based mechanism.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Licopeno/análogos & derivados , Complexo de Proteína do Fotossistema I/química , Sequência de Aminoácidos , Difenilamina/farmacologia , Hyphomicrobiaceae/química , Hyphomicrobiaceae/efeitos dos fármacos , Estabilidade Proteica , Alinhamento de Sequência , Temperatura
2.
Biochemistry ; 57(30): 4496-4503, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29965735

RESUMO

The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium tepidum exhibits a largely red-shifted LH1 Q y absorption at 915 nm due to binding of Ca2+, resulting in an "uphill" energy transfer from LH1 to the reaction center (RC). In a recent study, we developed a heterologous expression system (strain TS2) to construct a functional hybrid LH1-RC with LH1 from Tch. tepidum and the RC from Rhodobacter sphaeroides [Nagashima, K. V. P., et al. (2017) Proc. Natl. Acad. Sci. U. S. A. 114, 10906]. Here, we present detailed characterizations of the hybrid LH1-RC from strain TS2. Effects of metal cations on the phototrophic growth of strain TS2 revealed that Ca2+ is an indispensable element for its growth, which is also true for Tch. tepidum but not for Rba. sphaeroides. The thermal stability of the TS2 LH1-RC was strongly dependent on Ca2+ in a manner similar to that of the native Tch. tepidum, but interactions between the heterologous LH1 and RC became relatively weaker in strain TS2. A Fourier transform infrared analysis demonstrated that the Ca2+-binding site of TS2 LH1 was similar but not identical to that of Tch. tepidum. Steady-state and time-resolved fluorescence measurements revealed that the uphill energy transfer rate from LH1 to the RC was related to the energy gap in an order of Rba. sphaeroides, Tch. tepidum, and strain TS2; however, the quantum yields of LH1 fluorescence did not exhibit such a correlation. On the basis of these findings, we discuss the roles of Ca2+, interactions between LH1 and the RC from different species, and the uphill energy transfer mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cálcio/metabolismo , Chromatiaceae/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Agregados Proteicos , Ligação Proteica , Estabilidade Proteica , Rhodobacter sphaeroides/química
3.
Biochim Biophys Acta Bioenerg ; 1862(1): 148307, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926863

RESUMO

Redox-active quinones play essential roles in efficient light energy conversion in type-II reaction centers of purple phototrophic bacteria. In the light-harvesting 1 reaction center (LH1-RC) complex of purple bacteria, QB is converted to QBH2 upon light-induced reduction and QBH2 is transported to the quinone pool in the membrane through the LH1 ring. In the purple bacterium Rhodobacter sphaeroides, the C-shaped LH1 ring contains a gap for quinone transport. In contrast, the thermophilic purple bacterium Thermochromatium (Tch.) tepidum has a closed O-shaped LH1 ring that lacks a gap, and hence the mechanism of photosynthetic quinone transport is unclear. Here we detected light-induced Fourier transform infrared (FTIR) signals responsible for changes of QB and its binding site that accompany photosynthetic quinone reduction in Tch. tepidum and characterized QB and QBH2 marker bands based on their 15N- and 13C-isotopic shifts. Quinone exchanges were monitored using reconstituted photosynthetic membranes comprised of solubilized photosynthetic proteins, membrane lipids, and exogenous ubiquinone (UQ) molecules. In combination with 13C-labeling of the LH1-RC and replacement of native UQ8 by ubiquinones of different tail lengths, we demonstrated that quinone exchanges occur efficiently within the hydrophobic environment of the lipid membrane and depend on the side chain length of UQ. These results strongly indicate that unlike the process in Rba. sphaeroides, quinone transport in Tch. tepidum occurs through the size-restricted hydrophobic channels in the closed LH1 ring and are consistent with structural studies that have revealed narrow hydrophobic channels in the Tch. tepidum LH1 transmembrane region.


Assuntos
Proteínas de Bactérias/química , Chromatiaceae/enzimologia , Complexos de Proteínas Captadores de Luz/química , Ubiquinona/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA