Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 62(3-4): 296-309, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35132661

RESUMO

Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost-effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research.


Assuntos
Fontes de Energia Bioelétrica , Microalgas , Animais , Biomassa , Ecossistema , Águas Residuárias
2.
J Basic Microbiol ; 62(3-4): 361-375, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978081

RESUMO

Removal of contaminants from wastewater is a big concern for the scientific community. Heavy metals are one of the major contaminants present in wastewater. Heavy metals such as Cd2+ , Pb2+ , Mn2+ , and so forth, are highly toxic and pose a serious threat to the environment due to their nonbiodegradable nature. With the advent of nanobiotechnology, heavy metal contaminants can be mitigated with the help of nanomaterials produced by eco-friendly methods. Specially designed bionanomaterials often exhibit properties such as increased shelf life, self-healing nature, adaptability in different environments, and cost-effectiveness, thus showing advantages over nanomaterials produced by physicochemical methods. Due to their high specificity and adsorption capacity, bionanomaterials can remove heavy metals present even in a very low concentration in wastewater. The use of bionanotechnology in their remediation paves a way for environmental sustainability and helps in cost reduction. This paper intends to discuss the nanobiotechnological approach for the remediation of heavy metals from wastewater. Furthermore, the paper also reviews some important nanomaterials and their potential applications in the depollution of heavy-metal contaminated wastewater.


Assuntos
Metais Pesados , Nanoestruturas , Adsorção , Biodegradação Ambiental , Metais Pesados/toxicidade , Águas Residuárias
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3459-3481, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37522916

RESUMO

Diabetes mellitus (D.M.) is a common metabolic disorder caused mainly by combining two primary factors, which are (1) defects in insulin production by the pancreatic ß-cells and (2) responsiveness of insulin-sensitive tissues towards insulin. Despite the rapid advancement in medicine to suppress elevated blood glucose levels (hyperglycemia) and insulin resistance associated with this hazard, a demand has undoubtedly emerged to find more effective and curative dimensions in therapeutic approaches against D.M. The administration of diabetes treatment that emphasizes insulin production and sensitivity may result in unfavorable side effects, reduced adherence, and potential treatment ineffectiveness. Recent progressions in genome editing technologies, for instance, in zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR-Cas)-associated nucleases, have greatly influenced the gene editing technology from concepts to clinical practices. Improvements in genome editing technologies have also opened up the possibility to target and modify specific genome sequences in a cell directly. CRISPR/Cas9 has proven effective in utilizing ex vivo gene editing in embryonic stem cells and stem cells derived from patients. This application has facilitated the exploration of pancreatic beta-cell development and function. Furthermore, CRISPR/Cas9 enables the creation of innovative animal models for diabetes and assesses the effectiveness of different therapeutic strategies in treating the condition. We, therefore, present a critical review of the therapeutic approaches of the genome editing tool CRISPR-Cas9 in treating D.M., discussing the challenges and limitations of implementing this technology.


Assuntos
Sistemas CRISPR-Cas , Diabetes Mellitus , Animais , Humanos , Edição de Genes/métodos , Insulina , Diferenciação Celular , Diabetes Mellitus/genética , Diabetes Mellitus/terapia
4.
Vaccines (Basel) ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851146

RESUMO

The global outgoing outbreaks of Ebola virus disease (EVD) in different regions of Sudan, Uganda, and Western Africa have brought into focus the inadequacies and restrictions of pre-designed vaccines for use in the battle against EVD, which has affirmed the urgent need for the development of a systematic protocol to produce Ebola vaccines prior to an outbreak. There are several vaccines available being developed by preclinical trials and human-based clinical trials. The group of vaccines includes virus-like particle-based vaccines, DNA-based vaccines, whole virus recombinant vaccines, incompetent replication originated vaccines, and competent replication vaccines. The limitations and challenges faced in the development of Ebola vaccines are the selection of immunogenic, rapid-responsive, cross-protective immunity-based vaccinations with assurances of prolonged protection. Another issue for the manufacturing and distribution of vaccines involves post authorization, licensing, and surveillance to ensure a vaccine's efficacy towards combating the Ebola outbreak. The current review focuses on the development process, the current perspective on the development of an Ebola vaccine, and future challenges for combatting future emerging Ebola infectious disease.

5.
Mater Today Bio ; 21: 100701, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415846

RESUMO

Alzheimer's disease (AD) is a type of dementia that affects a vast number of people around the world, causing a great deal of misery and death. Evidence reveals a relationship between the presence of soluble Aß peptide aggregates and the severity of dementia in Alzheimer's patients. The BBB (Blood Brain Barrier) is a key problem in Alzheimer's disease because it prevents therapeutics from reaching the desired places. To address the issue, lipid nanosystems have been employed to deliver therapeutic chemicals for anti-AD therapy in a precise and targeted manner. The applicability and clinical significance of lipid nanosystems to deliver therapeutic chemicals (Galantamine, Nicotinamide, Quercetin, Resveratrol, Curcumin, HUPA, Rapamycin, and Ibuprofen) for anti-AD therapy will be discussed in this review. Furthermore, the clinical implications of the aforementioned therapeutic compounds for anti-AD treatment have been examined. Thus, this review will pave the way for researchers to fashion therodiagnostics approaches based on nanomedicine to overcome the problems of delivering therapeutic molecules across the blood brain barrier (BBB).

6.
Life (Basel) ; 12(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143468

RESUMO

Artificial intelligence (AI), currently a cutting-edge concept, has the potential to improve the quality of life of human beings. The fields of AI and biological research are becoming more intertwined, and methods for extracting and applying the information stored in live organisms are constantly being refined. As the field of AI matures with more trained algorithms, the potential of its application in epidemiology, the study of host-pathogen interactions and drug designing widens. AI is now being applied in several fields of drug discovery, customized medicine, gene editing, radiography, image processing and medication management. More precise diagnosis and cost-effective treatment will be possible in the near future due to the application of AI-based technologies. In the field of agriculture, farmers have reduced waste, increased output and decreased the amount of time it takes to bring their goods to market due to the application of advanced AI-based approaches. Moreover, with the use of AI through machine learning (ML) and deep-learning-based smart programs, one can modify the metabolic pathways of living systems to obtain the best possible outputs with the minimal inputs. Such efforts can improve the industrial strains of microbial species to maximize the yield in the bio-based industrial setup. This article summarizes the potentials of AI and their application to several fields of biology, such as medicine, agriculture, and bio-based industry.

7.
Biotechnol Genet Eng Rev ; : 1-26, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35923085

RESUMO

Increasing wastewater pollution owing to the briskly rising human population, rapid industrialization, and fast urbanization has necessitated highly efficient wastewater treatment technologies. Although several methods of wastewater treatments are in practice, expensiveness, use of noxious chemicals, generation of unsafe by-products, and longer time consumption restrain their use to a great extent. Over the last few decades, nanotechnological wastewater treatment approaches have received widespread recognition globally. Microbially fabricated nanoparticles reduce the utilization of reducing, capping, and stabilizing agents, and exhibit higher adsorptive and catalytic efficiency than chemically synthesized nanomaterials. The present review comprehensively summarizes the applications of microbial nanotechnology in the removal of a wide range of noxious wastewater pollutants. Moreover, prospects and challenges associated with the integration of nanotechnology with other biological treatment technologies including algal-membrane bioreactor, aerobic digestion, microbial fuel cells, and microbial nanofiber webs have also been briefly discussed.

8.
Biotechnol Genet Eng Rev ; 37(2): 178-207, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34672914

RESUMO

Cancer is one of the leading causes of death all around the world. It is a group of diseases characterized by abnormal and uncontrollable division of cells leading to severe health conditions and fatality if remains undiagnosed till later stages. Cancer can be caused due to mutation or sudden alterations by effect of certain external agents. Agents that can cause sudden alterations in the genetic content of an individual are known as mutagens. Mutations can lead to permanent changes in the genetic constituency of an individual and possibly lead to cancer. Mutagenic agents that possess the capacity to induce cancer in humans are called carcinogens. Carcinogens may be naturally present in the environment or generated by anthropogenic activities. However, with the progress in molecular techniques, genetic and/or epigenetic mechanisms of carcinogenesis of a wide range of carcinogens have been elucidated. Present review aims to discuss different types of environmental carcinogens and their respective mechanisms responsible for inducing cancer in humans.


Assuntos
Carcinógenos Ambientais , Neoplasias , Efeitos Antropogênicos , Carcinogênese , Humanos , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA