Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7780): 647-652, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645762

RESUMO

Microfluidic systems are now being designed with precision as miniaturized fluid manipulation devices that can execute increasingly complex tasks. However, their operation often requires numerous external control devices owing to the typically linear nature of microscale flows, which has hampered the development of integrated control mechanisms. Here we address this difficulty by designing microfluidic networks that exhibit a nonlinear relation between the applied pressure and the flow rate, which can be harnessed to switch the direction of internal flows solely by manipulating the input and/or output pressures. We show that these networks- implemented using rigid polymer channels carrying water-exhibit an experimentally supported fluid analogue of Braess's paradox, in which closing an intermediate channel results in a higher, rather than lower, total flow rate. The harnessed behaviour is scalable and can be used to implement flow routing with multiple switches. These findings have the potential to advance the development of built-in control mechanisms in microfluidic networks, thereby facilitating the creation of portable systems and enabling novel applications in areas ranging from wearable healthcare technologies to deployable space systems.

2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021085

RESUMO

A widely held assumption on network dynamics is that similar components are more likely to exhibit similar behavior than dissimilar ones and that generic differences among them are necessarily detrimental to synchronization. Here, we show that this assumption does not generally hold in oscillator networks when communication delays are present. We demonstrate, in particular, that random parameter heterogeneity among oscillators can consistently rescue the system from losing synchrony. This finding is supported by electrochemical-oscillator experiments performed on a multielectrode array network. Remarkably, at intermediate levels of heterogeneity, random mismatches are more effective in promoting synchronization than parameter assignments specifically designed to facilitate identical synchronization. Our results suggest that, rather than being eliminated or ignored, intrinsic disorder in technological and biological systems can be harnessed to help maintain coherence required for function.

3.
Chaos ; 34(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995992

RESUMO

We investigate the entrainment of electrochemical oscillators with different phase response curves (PRCs) using a global signal: the goal is to achieve the desired phase configuration using a minimum-power waveform. Establishing the desired phase relationships in a highly nonlinear networked system exhibiting significant heterogeneities, such as different conditions or parameters for the oscillators, presents a considerable challenge because different units respond differently to the common global entraining signal. In this work, we apply an optimal phase-selective entrainment technique in both a kinetic model and experiments involving electrochemical oscillators in achieving phase synchronized states. We estimate the PRCs of the oscillators at different circuit potentials and external resistance, and entrain pairs and small sets of four oscillators in various phase configurations. We show that for small PRC variations, phase assignment can be achieved using an averaged PRC in the control design. However, when the PRCs are sufficiently different, individual PRCs are needed to entrain the system with the expected phase relationships. The results show that oscillator assemblies with heterogeneous PRCs can be effectively entrained to desired phase configurations in practical settings. These findings open new avenues to applications in biological and engineered oscillator systems where synchronization patterns are essential for system performance.

4.
Bull Math Biol ; 85(3): 18, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705777

RESUMO

Modelling epidemics on networks represents an important departure from classical compartmental models which assume random mixing. However, the resulting models are high-dimensional and their analysis is often out of reach. It turns out that mean-field models, low-dimensional systems of differential equations, whose variables are carefully chosen expected quantities from the exact model provide a good approximation and incorporate explicitly some network properties. Despite the emergence of such mean-field models, there has been limited work on investigating whether these can be used for inference purposes. In this paper, we consider network-based mean-field models and explore the problem of parameter identifiability when observations about an epidemic are available. Making use of the analytical tractability of most network-based mean-field models, e.g. explicit analytical expressions for leading eigenvalue and final epidemic size, we set up the parameter identifiability problem as finding the solution or solutions of a system of coupled equations. More precisely, subject to observing/measuring growth rate and final epidemic size, we seek to identify parameter values leading to these measurements. We are particularly concerned with disentangling transmission rate from the network density. To do this, we give a condition for practical identifiability and we find that except for the simplest model, parameters cannot be uniquely determined, that is, they are practically unidentifiable. This means that there exist multiple solutions (a manifold of infinite measure) which give rise to model output that is close to the data. Identifying, formalising and analytically describing this problem should lead to a better appreciation of the complexity involved in fitting models with many parameters to data.


Assuntos
Epidemias , Modelos Biológicos , Conceitos Matemáticos , Modelos Epidemiológicos
5.
Bull Math Biol ; 86(1): 6, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063898

RESUMO

Epidemic propagation on networks represents an important departure from traditional mass-action models. However, the high-dimensionality of the exact models poses a challenge to both mathematical analysis and parameter inference. By using mean-field models, such as the pairwise model (PWM), the high-dimensionality becomes tractable. While such models have been used extensively for model analysis, there is limited work in the context of statistical inference. In this paper, we explore the extent to which the PWM with the susceptible-infected-recovered (SIR) epidemic can be used to infer disease- and network-related parameters. Data from an epidemics can be loosely categorised as being population level, e.g., daily new cases, or individual level, e.g., recovery times. To understand if and how network inference is influenced by the type of data, we employed the widely-used MLE approach for population-level data and dynamical survival analysis (DSA) for individual-level data. For scenarios in which there is no model mismatch, such as when data are generated via simulations, both methods perform well despite strong dependence between parameters. In contrast, for real-world data, such as foot-and-mouth, H1N1 and COVID19, whereas the DSA method appears fairly robust to potential model mismatch and produces parameter estimates that are epidemiologically plausible, our results with the MLE method revealed several issues pertaining to parameter unidentifiability and a lack of robustness to exact knowledge about key quantities such as population size and/or proportion of under reporting. Taken together, however, our findings suggest that network-based mean-field models can be used to formulate approximate likelihoods which, coupled with an efficient inference scheme, make it possible to not only learn about the parameters of the disease dynamics but also that of the underlying network.


Assuntos
Epidemias , Vírus da Influenza A Subtipo H1N1 , Modelos Biológicos , Conceitos Matemáticos , Probabilidade
6.
J Math Biol ; 87(2): 36, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532967

RESUMO

We prove that it is possible to obtain the exact closure of SIR pairwise epidemic equations on a configuration model network if and only if the degree distribution follows a Poisson, binomial, or negative binomial distribution. The proof relies on establishing the equivalence, for these specific degree distributions, between the closed pairwise model and a dynamical survival analysis (DSA) model that was previously shown to be exact. Specifically, we demonstrate that the DSA model is equivalent to the well-known edge-based Volz model. Using this result, we also provide reductions of the closed pairwise and Volz models to a single equation that involves only susceptibles. This equation has a useful statistical interpretation in terms of times to infection. We provide some numerical examples to illustrate our results.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Modelos Biológicos , Doenças Transmissíveis/epidemiologia , Epidemias/prevenção & controle , Suscetibilidade a Doenças/epidemiologia
7.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535024

RESUMO

The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circadian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase synchronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e., generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transferring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the daily rhythms in sleep-wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Cricetinae , Animais , Simulação por Computador , Escuridão , Análise por Conglomerados
8.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729101

RESUMO

The spatiotemporal organization of networks of dynamical units can break down resulting in diseases (e.g., in the brain) or large-scale malfunctions (e.g., power grid blackouts). Re-establishment of function then requires identification of the optimal intervention site from which the network behavior is most efficiently re-stabilized. Here, we consider one such scenario with a network of units with oscillatory dynamics, which can be suppressed by sufficiently strong coupling and stabilizing a single unit, i.e., pinning control. We analyze the stability of the network with hyperbolas in the control gain vs coupling strength state space and identify the most influential node (MIN) as the node that requires the weakest coupling to stabilize the network in the limit of very strong control gain. A computationally efficient method, based on the Moore-Penrose pseudoinverse of the network Laplacian matrix, was found to be efficient in identifying the MIN. In addition, we have found that in some networks, the MIN relocates when the control gain is changed, and thus, different nodes are the most influential ones for weakly and strongly coupled networks. A control theoretic measure is proposed to identify networks with unique or relocating MINs. We have identified real-world networks with relocating MINs, such as social and power grid networks. The results were confirmed in experiments with networks of chemical reactions, where oscillations in the networks were effectively suppressed through the pinning of a single reaction site determined by the computational method.

9.
SIAM J Appl Dyn Syst ; 22(3): 2180-2205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38835972

RESUMO

We develop a framework to design optimal entrainment signals that entrain an ensemble of heterogeneous nonlinear oscillators, described by phase models, at desired phases. We explicitly take into account heterogeneity in both oscillation frequency and the type of oscillators characterized by different Phase Response Curves. The central idea is to leverage the Fourier series representation of periodic functions to decode a phase-selective entrainment task into a quadratic program. We demonstrate our approach using a variety of phase models, where we entrain the oscillators into distinct phase patterns. Also, we show how the generalizability gained from our formulation enables us to meet a wide range of design objectives and constraints, such as minimum-power, fast entrainment, and charge-balanced controls.

10.
PLoS Comput Biol ; 17(3): e1008763, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33735171

RESUMO

The interventions and outcomes in the ongoing COVID-19 pandemic are highly varied. The disease and the interventions both impose costs and harm on society. Some interventions with particularly high costs may only be implemented briefly. The design of optimal policy requires consideration of many intervention scenarios. In this paper we investigate the optimal timing of interventions that are not sustainable for a long period. Specifically, we look at at the impact of a single short-term non-repeated intervention (a "one-shot intervention") on an epidemic and consider the impact of the intervention's timing. To minimize the total number infected, the intervention should start close to the peak so that there is minimal rebound once the intervention is stopped. To minimise the peak prevalence, it should start earlier, leading to initial reduction and then having a rebound to the same prevalence as the pre-intervention peak rather than one very large peak. To delay infections as much as possible (as might be appropriate if we expect improved interventions or treatments to be developed), earlier interventions have clear benefit. In populations with distinct subgroups, synchronized interventions are less effective than targeting the interventions in each subcommunity separately.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/imunologia , Biologia Computacional , Suscetibilidade a Doenças/epidemiologia , Política de Saúde , Humanos , Imunidade Coletiva , Conceitos Matemáticos , Modelos Estatísticos , Pandemias/estatística & dados numéricos , Prevalência , Fatores de Tempo
11.
Chaos ; 32(9): 093128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182363

RESUMO

A passive electrochemical coupling approach is proposed to induce spontaneous synchronization between chemical oscillators. The coupling exploits the potential difference between a catalyst redox couple in the Belousov-Zhabotinsky (BZ) reaction, without external feedback, to induce surface reactions that impact the kinetics of the bulk system. The effect of coupling in BZ oscillators under batch condition is characterized using phase synchronization measures. Although the frequency of the oscillators decreases nonlinearly over time, by a factor of 2 or more within 100 cycles, the coupling is strong enough to maintain synchronization. In such a highly drifting system, the Gibbs-Shannon entropy of the cyclic phase difference distribution can be used to quantify the coupling effect. We extend the Oregonator BZ model to account for the drifting natural frequencies in batch condition and for electrochemical coupling, and numerical simulations of the effect of acid concentration on synchronization patterns are in agreement with the experiments. Because of the passive nature of coupling, the proposed coupling scheme can open avenues for designing pattern recognition and neuromorphic computation systems using chemical reactions in a spontaneous process.

12.
Bull Math Biol ; 83(11): 117, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654959

RESUMO

The contact structure of a population plays an important role in transmission of infection. Many 'structured models' capture aspects of the contact pattern through an underlying network or a mixing matrix. An important observation in unstructured models of a disease that confers immunity is that once a fraction [Formula: see text] has been infected, the residual susceptible population can no longer sustain an epidemic. A recent observation of some structured models is that this threshold can be crossed with a smaller fraction of infected individuals, because the disease acts like a targeted vaccine, preferentially immunising higher-risk individuals who play a greater role in transmission. Therefore, a limited 'first wave' may leave behind a residual population that cannot support a second wave once interventions are lifted. In this paper, we set out to investigate this more systematically. While networks offer a flexible framework to model contact patterns explicitly, they suffer from several shortcomings: (i) high-fidelity network models require a large amount of data which can be difficult to harvest, and (ii) very few, if any, theoretical contact network models offer the flexibility to tune different contact network properties within the same framework. Therefore, we opt to systematically analyse a number of well-known mean-field models. These are computationally efficient and provide good flexibility in varying contact network properties such as heterogeneity in the number contacts, clustering and household structure or differentiating between local and global contacts. In particular, we consider the question of herd immunity under several scenarios. When modelling interventions as changes in transmission rates, we confirm that in networks with significant degree heterogeneity, the first wave of the epidemic confers herd immunity with significantly fewer infections than equivalent models with less or no degree heterogeneity. However, if modelling the intervention as a change in the contact network, then this effect may become much more subtle. Indeed, modifying the structure disproportionately can shield highly connected nodes from becoming infected during the first wave and therefore make the second wave more substantial. We strengthen this finding by using an age-structured compartmental model parameterised with real data and comparing lockdown periods implemented either as a global scaling of the mixing matrix or age-specific structural changes. Overall, we find that results regarding (disease-induced) herd immunity levels are strongly dependent on the model, the duration of the lockdown and how the lockdown is implemented in the model.


Assuntos
Epidemias , Imunidade Coletiva , Modelos Epidemiológicos , Humanos , Conceitos Matemáticos , Modelos Teóricos
13.
Proc Natl Acad Sci U S A ; 115(37): 9300-9305, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150403

RESUMO

Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network topology remain a challenge due to the tremendous scale of emerging systems (e.g., brain and social networks) and the inherent nonlinearity within and between individual units. We develop a unified, data-driven approach to efficiently infer connections of networks (ICON). We apply ICON to determine topology of networks of oscillators with different periodicities, degree nodes, coupling functions, and time scales, arising in silico, and in electrochemistry, neuronal networks, and groups of mice. This method enables the formulation of these large-scale, nonlinear estimation problems as a linear inverse problem that can be solved using parallel computing. Working with data from networks, ICON is robust and versatile enough to reliably reveal full and partial resonance among fast chemical oscillators, coherent circadian rhythms among hundreds of cells, and functional connectivity mediating social synchronization of circadian rhythmicity among mice over weeks.


Assuntos
Modelos Teóricos
14.
Chaos ; 31(5): 053125, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34240953

RESUMO

We investigate the synchronization of coupled electrochemical bursting oscillators using the electrodissolution of iron in sulfuric acid. The dynamics of a single oscillator consisted of slow chaotic oscillations interrupted by a burst of fast spiking, generating a multiple time-scale dynamical system. A wavelet analysis first decomposed the time series data from each oscillator into a fast and a slow component, and the corresponding phases were also obtained. The phase synchronization of the fast and slow dynamics was analyzed as a function of electrical coupling imposed by an external coupling resistance. For two oscillators, a progressive transition was observed: With increasing coupling strength, first, the fast bursting intervals overlapped, which was followed by synchronization of the fast spiking, and finally, the slow chaotic oscillations synchronized. With a population of globally coupled 25 oscillators, the coupling eliminated the fast dynamics, and only the synchronization of the slow dynamics can be observed. The results demonstrated the complexities of synchronization with bursting oscillations that could be useful in other systems with multiple time-scale dynamics, in particular, in neuronal networks.

15.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781946

RESUMO

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Imunidade Coletiva , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , COVID-19 , Criança , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Erradicação de Doenças , Características da Família , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Instituições Acadêmicas , Estudos Soroepidemiológicos
16.
Phys Rev Lett ; 125(9): 094101, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915595

RESUMO

Synchronization is a widespread phenomenon observed in physical, biological, and social networks, which persists even under the influence of strong noise. Previous research on oscillators subject to common noise has shown that noise can actually facilitate synchronization, as correlations in the dynamics can be inherited from the noise itself. However, in many spatially distributed networks, such as the mammalian circadian system, the noise that different oscillators experience can be effectively uncorrelated. Here, we show that uncorrelated noise can in fact enhance synchronization when the oscillators are coupled. Strikingly, our analysis also shows that uncorrelated noise can be more effective than common noise in enhancing synchronization. We first establish these results theoretically for phase and phase-amplitude oscillators subject to either or both additive and multiplicative noise. We then confirm the predictions through experiments on coupled electrochemical oscillators. Our findings suggest that uncorrelated noise can promote rather than inhibit coherence in natural systems and that the same effect can be harnessed in engineered systems.


Assuntos
Relógios Biológicos , Modelos Teóricos , Humanos , Oscilometria/métodos , Processos Estocásticos
17.
Chaos ; 30(6): 063139, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32611096

RESUMO

A methodology is presented based on wavelet techniques to approximate fast and slow dynamics present in time-series whose behavior is characterized by different local scales in time. These approximations are useful to understand the global dynamics of the original full systems, especially in experimental situations where all information is contained in a one-dimensional time-series. Wavelet analysis is a natural approach to handle these approximations because each dynamical behavior manifests its specific subset in frequency domain, for example, with two time scales, the slow and fast dynamics, present in low and high frequencies, respectively. The proposed procedure is illustrated by the analysis of a complex experimental time-series of iron electrodissolution where the slow chaotic dynamics is interrupted by fast irregular spiking. The method can be used to first filter the time-series data and then separate the fast and slow dynamics even when clear maxima and/or minima in the corresponding global wavelet spectrum are missing. The results could find applications in the analysis of synchronization of complex systems through multi-scale analysis.

18.
Philos Trans A Math Phys Eng Sci ; 377(2160): 20190095, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31656145

RESUMO

The synchronization of two groups of electrochemical oscillators is investigated during the electrodissolution of nickel in sulfuric acid. The oscillations are coupled through combined capacitance and resistance, so that in a single pair of oscillators (nearly) in-phase synchronization is obtained. The internal coupling within each group is relatively strong, but there is a phase difference between the fast and slow oscillators. The external coupling between the two groups is weak. The experiments show that the two groups can exhibit (nearly) anti-phase collective synchronization. Such synchronization occurs only when the external coupling is weak, and the interactions are delayed by the capacitance. When the external coupling is restricted to those between the fast and the slow elements, the anti-phase synchronization is more prominent. The results are interpreted with phase models. The theory predicts that, for anti-phase collective synchronization, there must be a minimum internal phase difference for a given shift in the phase coupling function. This condition is less stringent with external fast-to-slow coupling. The results provide a framework for applications of collective phase synchronization in modular networks where weak coupling between the groups can induce synchronization without rearrangements of the phase dynamics within the groups. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.

19.
J Math Biol ; 79(3): 823-860, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31079178

RESUMO

The epidemic threshold is probably the most studied quantity in the modelling of epidemics on networks. For a large class of networks and dynamics, it is well studied and understood. However, it is less so for clustered networks where theoretical results are mostly limited to idealised networks. In this paper we focus on a class of models known as pairwise models where, to our knowledge, no analytical result for the epidemic threshold exists. We show that by exploiting the presence of fast variables and using some standard techniques from perturbation theory we are able to obtain the epidemic threshold analytically. We validate this new threshold by comparing it to the threshold based on the numerical solution of the full system. The agreement is found to be excellent over a wide range of values of the clustering coefficient, transmission rate and average degree of the network. Interestingly, we find that the analytical form of the threshold depends on the choice of closure, highlighting the importance of model selection when dealing with real-world epidemics. Nevertheless, we expect that our method will extend to other systems in which fast variables are present.


Assuntos
Doenças Transmissíveis/patologia , Simulação por Computador , Epidemias/prevenção & controle , Modelos Teóricos , Humanos
20.
Chaos ; 29(8): 083117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472493

RESUMO

Rotating wave synchronization patterns are explored with a ring of 20 electrochemical oscillators during nickel electrodissolution in sulfuric acid. With desynchronized initial states, coupling alone yields predominance of nonrotating solutions, i.e., in-phase synchronization. An experimental technique is presented in which, through a combination of temporary alterations in topology, the application of global feedback provides rotational solutions. With phase repulsive global feedback, the in-phase synchronization is destabilized and a rotating wave is obtained. This feedback induced rotating wave can be employed to establish an initial condition for the rotating wave with coupling only. Higher order rotating solutions with 2, 3, and 4 waves corotating around the ring are observed, where the initial conditions are generated by temporary network rewiring to a structure with 2, 3, and 4 loops, respectively, and by global feedback. The experimental observations are supported by numerical simulations with a phase model. The results indicate that while network plasticity is thought to be significant in the operation of neural systems, it can also play a role in pattern selection of chemical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA