Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Synchrotron Radiat ; 29(Pt 2): 393-399, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254302

RESUMO

Algorithms and procedures to fully automate retuning of synchrotron radiation beamlines over wide energy ranges are discussed. The discussion is based on the implementation at the National Institute of General Medical Sciences and the National Cancer Institute Structural Biology Facility at the Advanced Photon Source. When a user selects a new beamline energy, software synchronously controls the beamline monochromator and undulator to maintain the X-ray beam flux after the monochromator, preserves beam attenuation by determining a new set of attenuator foils, changes, as needed, mirror reflecting stripes and the undulator harmonic, preserves beam focal distance of compound refractive lens focusing by changing the In/Out combination of lenses in the transfocator, and, finally, restores beam position at the sample by on-the-fly scanning of either the Kirkpatrick-Baez mirror angles or the transfocator up/down and inboard/outboard positions. The sample is protected from radiation damage by automatically moving it out of the beam during the energy change and optimization.


Assuntos
Lentes , Síncrotrons , Fótons , Software , Raios X
2.
J Synchrotron Radiat ; 24(Pt 1): 188-195, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009558

RESUMO

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.


Assuntos
Cristalografia por Raios X , Proteínas/química , Difração de Raios X , Cristalização , Substâncias Macromoleculares , Síncrotrons
3.
Anal Chem ; 87(14): 7036-42, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26076060

RESUMO

Cell-to-cell variability and functional heterogeneity are integral features of multicellular organisms. Chemical classification of cells into cell type is important for understanding cellular specialization as well as organismal function and organization. Assays to elucidate these chemical variations are best performed with single cell samples because tissue homogenates average the biochemical composition of many different cells and oftentimes include extracellular components. Several single cell microanalysis techniques have been developed but tend to be low throughput or require preselection of molecular probes that limit the information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular populations.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Aplysia/metabolismo , Cromatografia Líquida de Alta Pressão , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Sistema Nervoso/metabolismo , Peptídeos/classificação , Hipófise/citologia , Hipófise/metabolismo , Análise de Componente Principal , Ratos
4.
J Am Chem Soc ; 136(6): 2404-12, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24451055

RESUMO

Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald's Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation.


Assuntos
Aminoácidos/química , Cristalização , Estabilidade de Medicamentos , Cinética , Microscopia Confocal , Estereoisomerismo , Termodinâmica
5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 843-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633594

RESUMO

The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using ß2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.


Assuntos
Cristalografia por Raios X/métodos , Microscopia/métodos , Proteínas/química , Animais , Cristalografia por Raios X/instrumentação , Cavalos , Processamento de Imagem Assistida por Computador , Mioglobina/química , Conformação Proteica , Receptores Adrenérgicos beta 2/química , Síncrotrons , Difração de Raios X
6.
Opt Express ; 20(9): 10406-15, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535131

RESUMO

Data from photomultiplier tubes are typically analyzed using either counting or averaging techniques, which are most accurate in the dim and bright signal limits, respectively. A statistical means of adjoining these two techniques is presented by recovering the Poisson parameter from averaged data and relating it to the statistics of binomial counting from Kissick et al. [Anal. Chem. 82, 10129 (2010)]. The point at which binomial photon counting and averaging have equal signal to noise ratios is derived. Adjoining these two techniques generates signal to noise ratios at 87% to approaching 100% of theoretical maximum across the full dynamic range of the photomultiplier tube used. The technique is demonstrated in a second harmonic generation microscope.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Fotometria/instrumentação , Simulação por Computador , Fótons
7.
Anal Chem ; 82(24): 10129-34, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21114249

RESUMO

An experimentally simple photon counting method is demonstrated providing 7 orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons present and the Poisson distribution of photons, observed counts for a given threshold can be related to the mean number of photons well beyond the conventional limit. Analytical expressions are derived relating counts and photons that extend the linear range to an average of ∼11 photons arriving simultaneously with a single threshold. These expressions can be evaluated numerically for multiple thresholds extending the linear range to the saturation point of the PMT. The peak voltage distributions are experimentally shown to follow a Poisson weighted sum of log-normal distributions that can all be derived from the single photoelectron voltage peak-height distribution. The LDR that results from this method is compared to conventional single photon counting (SPC) and to signal averaging by analog to digital conversion (ADC).


Assuntos
Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Fótons , Elétrons , Modelos Estatísticos , Distribuição de Poisson
8.
Anal Chem ; 82(2): 491-7, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20025250

RESUMO

Second-order nonlinear optical imaging of chiral crystals (SONICC) is explored for selective detection of integral membrane protein crystals grown in opaque and turbid environments. High turbidity is a hallmark of membrane protein crystallization due to the extensive use of detergent and/or lipids that often form various mesophases. Detection of crystals in such media by conventional optical methods (e.g., intrinsic UV fluorescence, birefringence, bright-field image analysis, etc.) is often complicated by optical scattering and by the small sizes of the crystals that routinely form. SONICC is shown to be well-suited for this application, by nature of its compatibility with imaging in scattering media and its high selectivity for protein crystals. Bright second harmonic generation (SHG) (up to 18 million counts/s) was observed from even relatively small crystals (5 mum) with a minimal background due to the surrounding lipid mesophase ( approximately 1 thousand counts/s). The low background nature of the resulting protein crystal images permitted the use of a relatively simple, particle counting analysis for preliminary scoring. Comparisons between a particle counting analysis of SONICC images and protocols based on the human expert analysis of conventional bright-field and birefringence images were performed.


Assuntos
Lipídeos/química , Proteínas de Membrana/química , Fenômenos Ópticos , Cristalização , Corantes Fluorescentes/química , Humanos
9.
Anal Chem ; 82(13): 5425-32, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20515064

RESUMO

Second order nonlinear optical imaging of chiral crystals (SONICC) was applied to selectively detect crystal formation at early stages and characterize the kinetics of nucleation and growth. SONICC relies on second harmonic generation (SHG), a nonlinear optical effect that only arises from noncentosymmetric ordered domain structures, which include crystals of chiral molecules. The model systems studied include pharmaceutically relevant compounds: griseofulvin and chlorpropamide. SONICC demonstrates low detection limits producing an 8 order of magnitude improvement relative to macroscopic average techniques and 5 order of magnitude improvement relative to optical microscopy. SONICC was also applied to examine the kinetics of crystallization in amorphous griseofulvin. The results show that SONICC enables simultaneous monitoring of individual crystal growth, nucleation rate, and macroscopic crystallization kinetics.


Assuntos
Clorpropamida/química , Griseofulvina/química , Microscopia/métodos , Cristalização , Cinética , Estereoisomerismo
10.
IUCrJ ; 6(Pt 3): 412-425, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098022

RESUMO

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Šusing 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.

11.
J Am Chem Soc ; 130(43): 14076-7, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18831587

RESUMO

The unique symmetry properties of second harmonic generation (SHG) microscopy enabled sensitive and selective imaging of protein microcrystals with negligible contributions from solvated proteins or amorphous protein aggregates. In studies of microcrystallites of green fluorescent protein (GFP) prepared in 500 pL droplets, the SHG intensities rivaled those of fluorescence, but with superb selectivity for crystalline regions. GFP in amorphous aggregates and in solution produced substantial background fluorescence, but no detectable SHG. The ratio of the forward-to-backward detected SHG provides a measure of the particle size, suggesting detection limits down to crystallites 100 nm in diameter under low magnification (10x). In addition to being sensitive and highly selective, second-order nonlinear optical imaging of chiral crystals (SONICC) is directly compatibility with virtually all common protein crystallization platforms.


Assuntos
Proteínas de Fluorescência Verde/química , Microscopia de Polarização/métodos , Muramidase/química , Cristalização , Proteínas de Fluorescência Verde/análise , Microscopia de Fluorescência/métodos , Muramidase/análise , Sensibilidade e Especificidade , Fatores de Tempo
12.
IUCrJ ; 5(Pt 5): 548-558, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224958

RESUMO

In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Šresolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.

13.
Nat Protoc ; 13(2): 260-292, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29300389

RESUMO

Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25°C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in ≤90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.


Assuntos
Cristalografia por Raios X/métodos , Ensaios de Triagem em Larga Escala/métodos , Cristalização , Coleta de Dados , Ensaios de Triagem em Larga Escala/instrumentação , Lipídeos , Proteínas de Membrana/análise , Polietilenotereftalatos/química , Proteínas/química , Temperatura , Raios X
14.
Methods Mol Biol ; 1607: 143-164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573572

RESUMO

Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.


Assuntos
Cristalização/métodos , Elétrons , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imagem Óptica/métodos , Proteínas/ultraestrutura , Espectrometria de Fluorescência/métodos , Lasers , Microscopia Eletrônica , Imagem Óptica/instrumentação , Proteínas/química , Espectrometria de Fluorescência/instrumentação , Síncrotrons , Difração de Raios X
15.
Artigo em Inglês | MEDLINE | ID: mdl-29527589

RESUMO

A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.

16.
IUCrJ ; 4(Pt 4): 439-454, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875031

RESUMO

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Šresolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

17.
Cryst Growth Des ; 16(11): 6318-6326, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28261000

RESUMO

In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometer-based X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.

18.
Proc SPIE Int Soc Opt Eng ; 8657: 86570E, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24817799

RESUMO

Despite the ubiquitous use of multi-photon and confocal microscopy measurements in biology, the core techniques typically suffer from fundamental compromises between signal to noise (S/N) and linear dynamic range (LDR). In this study, direct synchronous digitization of voltage transients coupled with statistical analysis is shown to allow S/N approaching the theoretical maximum throughout an LDR spanning more than 8 decades, limited only by the dark counts of the detector on the low end and by the intrinsic nonlinearities of the photomultiplier tube (PMT) detector on the high end. Synchronous digitization of each voltage transient represents a fundamental departure from established methods in confocal/multi-photon imaging, which are currently based on either photon counting or signal averaging. High information-density data acquisition (up to 3.2 GB/s of raw data) enables the smooth transition between the two modalities on a pixel-by-pixel basis and the ultimate writing of much smaller files (few kB/s). Modeling of the PMT response allows extraction of key sensor parameters from the histogram of voltage peak-heights. Applications in second harmonic generation (SHG) microscopy are described demonstrating S/N approaching the shot-noise limit of the detector over large dynamic ranges.

19.
Artigo em Inglês | MEDLINE | ID: mdl-21469954

RESUMO

Second-order nonlinear optical imaging of chiral crystals (SONICC) is an emerging technique for crystal imaging and characterization. We provide a brief overview of the origin of second harmonic generation signals in SONICC and discuss recent studies using SONICC for biological applications. Given that they provide near-complete suppression of any background, SONICC images can be used to determine the presence or absence of protein crystals through both manual inspection and automated analysis. Because SONICC creates high-resolution images, nucleation and growth kinetics can also be observed. SONICC can detect metastable, homochiral crystalline forms of amino acids crystallizing from racemic solutions, which confirms Ostwald's rule of stages for crystal growth. SONICC's selectivity, based on order, and sensitivity, based on background suppression, make it a promising technique for numerous fields concerned with chiral crystal formation.


Assuntos
Cristalização , Aminoácidos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA