Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 12(6): e1005010, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27362260

RESUMO

Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.


Assuntos
Fímbrias Bacterianas/metabolismo , Modelos Biológicos , Myxococcus xanthus/metabolismo , Myxococcus xanthus/fisiologia , Polissacarídeos Bacterianos/metabolismo , Proliferação de Células
2.
mSphere ; : e0035424, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940509

RESUMO

Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE: Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.

3.
J Med Entomol ; 60(4): 725-732, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37210592

RESUMO

As observed in many locations worldwide, resistance to pyrethroids is common in Aedes aegypti (L.) in the southern United States and northern Mexico. Strong resistance in Aedes albopictus (Skuse) is less common and is not as well characterized. These 2 species have been undergoing range expansion and are sympatric in many locations including Houston, Texas. They are often collected from the same locations and lay eggs in the same larval habitats. In this study, we colonized both Ae. aegypti and Ae. albopictus from 4 locations in Houston and characterized insecticide resistance using permethrin as a model pyrethroid. We found differences in resistance intensity between the species at all 4 sites. Within the Ae. aegypti, resistance ratios ranged from 3.5- to 30.0-fold when compared to the ORL1952 laboratory susceptible strain. Expression of several P450s was higher than in the ORL1952 strain, but the pattern was similar between the field strains of Ae. aegypti. Higher resistance ratios did correlate with increasing percentages of the dilocus knockdown resistance (kdr) genotype. In contrast, Ae. albopictus from the 4 locations all had very low resistance ratios (<4-fold) when compared to the same laboratory susceptible strain. Five years later, we performed additional collections and characterization from the most resistant location to assess the temporal persistence of this difference in resistance between the species. The same pattern of high resistance in Ae. aegypti and low resistance in sympatric Ae. albopictus remained 5 yr later and this may have implications for operational efficacy.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Aedes/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Permetrina/farmacologia , Larva , Inseticidas/farmacologia , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA