Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 281(1777): 20132890, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403341

RESUMO

Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Comportamento Alimentar , Tartarugas/fisiologia , Animais , Indonésia , Modelos Biológicos , Densidade Demográfica
2.
Sci Total Environ ; 783: 146858, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088119

RESUMO

Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.


Assuntos
Mudança Climática , Ecossistema , Sudeste Asiático , Carbono/análise , Sequestro de Carbono , Sedimentos Geológicos , Índia , Filipinas
3.
Mar Pollut Bull ; 160: 111544, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33181916

RESUMO

Seagrass longevity up to 47 years in well-restored, well-sited seagrass restorations are demonstrated from 253 trials at 83 regional sites in tropical and subtropical portions of three oceans (Atlantic, Pacific, Indian Oceans). These trials include over 3.04 million planted units into 306.3 ha. Approximately 12% of the total global tropical restored seagrass by Van Katwijk, Thorhaug et al. (2016) calculations from 1786 trials are included. Almost all projects herein reviewed persisted since date of planting except several cases with harsh anthropogenic impact or forceful natural events in first post-planting months. The oldest tropical/subtropical restoration continually observed is 47 yrs, many are 35 yrs. An array of observed and/or measured restored services accompanied these. This review may provide informational background for government resource managers, legislators, scientists, and citizens concerning tropical/subtropical seagrass longevity. This data from these trials may substantiate future seagrass restoration investments. Public outreach, national & regional government training,and outreach occurred, needing continuation.


Assuntos
Ecossistema , Longevidade , Oceano Índico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA