Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 92(2): 189-198, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28744961

RESUMO

Specific transcription factors have been identified in various heterotrophic bacterial species that regulate the sets of genes required for fatty acid metabolism. Here, we report that expression of the fab genes, encoding fatty acid biosynthetic enzymes, is regulated by the global regulator LexA in the photoautotrophic cyanobacterium Synechocystis sp. PCC 6803. Sll1626, an ortholog of the well-known LexA repressor involved in the SOS response in heterotrophic bacteria, was isolated from crude extracts of Synechocystis by DNA affinity chromatography, reflecting its binding to the upstream region of the acpP-fabF and fabI genes. An electrophoresis mobility shift assay revealed that the recombinant LexA protein can bind to the upstream region of each fab gene tested (fabD, fabH, fabF, fabG, fabZ and fabI). Quantitative RT-PCR analysis of the wild type and a lexA-disrupted mutant strain suggested that LexA acts as a repressor of the fab genes involved in initiation of fatty acid biosynthesis (fabD, fabH and fabF) and the first reductive step in the subsequent elongation cycle (fabG) under normal growth conditions. Under nitrogen-depleted conditions, downregulation of fab gene expression is partly achieved through an increase in LexA-repressing activity. In contrast, under phosphate-depleted conditions, fab gene expression is upregulated, probably due to the loss of repression by LexA. We further demonstrate that elimination of LexA largely increases the production of fatty acids in strains modified to secrete free fatty acids.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/biossíntese , Serina Endopeptidases/metabolismo , Synechocystis/metabolismo , Vias Biossintéticas , Cromatografia de Afinidade , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/fisiologia , Regiões Promotoras Genéticas , Synechocystis/genética
2.
Plant Physiol ; 162(2): 1153-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589835

RESUMO

cyAbrB is a transcriptional regulator unique to and highly conserved among cyanobacterial species. A gene-disrupted mutant of cyabrB2 (sll0822) in Synechocystis sp. PCC 6803 exhibited severe growth inhibition and abnormal accumulation of glycogen granules within cells under photomixotrophic conditions. Within 6 h after the shift to photomixotrophic conditions, sodium bicarbonate-dependent oxygen evolution activity markedly declined in the ΔcyabrB2 mutant, but the decrease in methyl viologen-dependent electron transport activity was much smaller, indicating inhibition in carbon dioxide fixation. Decreases in the transcript levels of several genes related to sugar catabolism, carbon dioxide fixation, and nitrogen metabolism were also observed within 6 h. Metabolome analysis by capillary electrophoresis mass spectrometry revealed that several metabolites accumulated differently in the wild-type and mutant strains. For example, the amounts of pyruvate and 2-oxoglutarate (2OG) were significantly lower in the mutant than in the wild type, irrespective of trophic conditions. The growth rate of the ΔcyabrB2 mutant was restored to a level comparable to that under photoautotrophic conditions by addition of 2OG to the growth medium under photomixotrophic conditions. Activities of various metabolic processes, including carbon dioxide fixation, respiration, and nitrogen assimilation, seemed to be enhanced by 2OG addition. These observations suggest that cyAbrB2 is essential for the active transcription of genes related to carbon and nitrogen metabolism upon a shift to photomixotrophic conditions. Deletion of cyAbrB2 is likely to deregulate the partition of carbon between storage forms and soluble forms used for biosynthetic purposes. This disorder may cause inactivation of cellular metabolism, excess accumulation of reducing equivalents, and subsequent loss of viability under photomixotrophic conditions.


Assuntos
Proteínas de Bactérias/genética , Mutação , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Metaboloma , Nitrogênio/metabolismo , Fotossíntese/genética , Ácido Pirúvico/metabolismo , Bicarbonato de Sódio/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento
3.
J Gen Appl Microbiol ; 66(2): 121-128, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32173680

RESUMO

In photosynthetic microorganisms, cell cycle progression depends on day and night cycles; however, how cell division is regulated in response to these environmental changes is poorly understood. RpaA has been implicated in the signal output from both circadian clocks and light/dark conditions in the unicellular spherical-celled cyanobacterium Synechocystis sp. PCC 6803. In the present study, we investigated the involvement of a two-component response regulator RpaA in cell division regulation. Firstly, we examined the effects of rpaA overexpression on cell morphology and the expression levels of cell division genes. We observed an increase in the volume of non-dividing cells and a high proportion of dividing cells in rpaA-overexpressing strains by light microscopy. The expression levels of selected cell division-related genes were higher in the rpaA-overexpressing strain than in the wild type, including minD of the Min system; cdv3 and zipN, which encode two divisome components; and murB, murC, and pbp2, which are involved in peptidoglycan (PG) synthesis. Moreover, in the rpaA-overexpressing strain, the outer membrane and cell wall PG layer were not smooth, and the outer membrane was not clearly visible by transmission electron microscopy. These results demonstrated that rpaA overexpression causes an impaired cell division, which is accompanied by transcriptional activation of cell division genes and morphological changes in the PG layer and outer membrane.


Assuntos
Membrana Externa Bacteriana/ultraestrutura , Proteínas de Ciclo Celular/genética , Divisão Celular , Relógios Circadianos/genética , Synechocystis/genética , Synechocystis/ultraestrutura , Proteínas de Ciclo Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia , Microscopia Eletrônica de Transmissão , Peptidoglicano/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Synechocystis/citologia
4.
Sci Rep ; 10(1): 17393, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060671

RESUMO

Different from typical LexA repressors in heterotrophic bacteria exerting SOS response by auto-cleavage, cyanobacterial LexAs, especially that of Synechocystis sp. PCC 6803 (S.6803), have been suggested be involved in regulation of a number of genes related to various cellular processes, rather than the typical SOS regulon. When and how cyanobacterial LexAs are triggered to regulate its target genes have remained unknown. In this study, we found the profound repressing effect of LexA on salt-stress inducible genes in S.6803. The repressing activity of LexA was likely to persist during salt stress and the salt response of these genes was mainly achieved by other regulators than LexA, suggesting that the physiological role of LexA is fine-tuning of gene expression in response to environmental changes. Although the amount and oligomeric state of LexA were unchanged upon salt stress, two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry analyses detected a change in posttranslational modification in a small fraction of LexA molecules, possibly dephosphorylation of Ser173, after 30 min upon the upshift in salt concentration. Activity of LexA in S.6803 may be under gradual control by posttranslational modification to fine-tune gene expression, which is contrasted with the digital switching-off regulation by auto-cleavage in heterotrophic bacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas Repressoras/fisiologia , Estresse Salino/fisiologia , Serina Endopeptidases/fisiologia , Synechocystis/fisiologia , Genes Bacterianos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Análise de Sequência de RNA/métodos , Synechocystis/genética
5.
Front Microbiol ; 7: 193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925056

RESUMO

LexA is a well-established transcriptional repressor of SOS genes induced by DNA damage in Escherichia coli and other bacterial species. However, LexA in the cyanobacterium Synechocystis sp. PCC 6803 has been suggested not to be involved in SOS response. In this study, we performed RNA-seq analysis of the wild-type strain and the lexA-disrupted mutant to obtain the comprehensive view of LexA-regulated genes in Synechocystis. Disruption of lexA positively or negatively affected expression of genes related to various cellular functions such as phototactic motility, accumulation of the major compatible solute glucosylglycerol and subunits of bidirectional hydrogenase, photosystem I, and phycobilisome complexes. We also observed increase in the expression level of genes related to iron and manganese uptake in the mutant at the later stage of cultivation. However, none of the genes related to DNA metabolism were affected by disruption of lexA. DNA gel mobility shift assay using the recombinant LexA protein suggested that LexA binds to the upstream region of pilA7, pilA9, ggpS, and slr1670 to directly regulate their expression, but changes in the expression level of photosystem I genes by disruption of lexA is likely a secondary effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA