Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 151, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167372

RESUMO

Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.


Assuntos
Aprendizado Profundo , Algoritmos , Análise de Sequência de Proteína/métodos , Peptídeos/química , Sequência de Aminoácidos
2.
Nat Protoc ; 16(2): 1276-1296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462443

RESUMO

RNA sequencing (RNA-seq) has emerged as a powerful approach to discover disease-causing gene regulatory defects in individuals affected by genetically undiagnosed rare disorders. Pioneering studies have shown that RNA-seq could increase the diagnosis rates over DNA sequencing alone by 8-36%, depending on the disease entity and tissue probed. To accelerate adoption of RNA-seq by human genetics centers, detailed analysis protocols are now needed. We present a step-by-step protocol that details how to robustly detect aberrant expression levels, aberrant splicing and mono-allelic expression in RNA-seq data using dedicated statistical methods. We describe how to generate and assess quality control plots and interpret the analysis results. The protocol is based on the detection of RNA outliers pipeline (DROP), a modular computational workflow that integrates all the analysis steps, can leverage parallel computing infrastructures and generates browsable web page reports.


Assuntos
Sequência de Bases/genética , Expressão Gênica/genética , Análise de Sequência de RNA/métodos , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Doença/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/genética , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA