RESUMO
Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.
Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Mineração , Material Particulado/toxicidade , Urânio , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Aguda , Testes de Toxicidade SubcrônicaRESUMO
Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 µm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults in Detroit, Michigan. This double-blind randomized crossover intervention study has shown that, compared to sham, air filtration for 3 days decreased 3-day average brachial systolic blood pressure by 3.2 mmHg. The results also showed that commercially available HEPA-type and true HEPA PAFs mitigated median indoor PM2.5 concentrations by 58% and 65%, respectively. However, to our knowledge, no health intervention study in which a significant positive health effect was observed has also evaluated how outdoor and indoor PM2.5 sources impacted the subjects. With that in mind, detailed characterization of outdoor and indoor PM2.5 samples collected during this study and a source apportionment analysis of those samples using a positive matrix factorization model were completed. The aims of this most recent work were to characterize the indoor and outdoor sources of the PM2.5 this community was exposed to and to assess how effectively commercially available HEPA-type and true HEPA PAFs were able to reduce indoor and outdoor PM2.5 source contributions. Methods: Approximately 24 h daily indoor and outdoor PM2.5 samples were collected on Teflon and Quartz filters from the apartments of 40 study subjects during each 3-day intervention period. These filters were analyzed for mass, carbon, and trace elements. Environmental Protection Agency Positive Matrix Factorization (PMF) 5.0 was utilized to determine major emission sources that contributed to the outdoor and indoor PM2.5 levels during this study. Results: The major sources of outdoor PM2.5 were secondary aerosols (28%), traffic/urban dust (24%), iron/steel industries (15%), sewage/municipal incineration (10%), and oil combustion/refinery (6%). The major sources of indoor PM2.5 were organic compounds (45%), traffic + sewage/municipal incineration (14%), secondary aerosols (13%), smoking (7%), and urban dust (2%). Infiltration of outdoor PM2.5 for sham, HEPA-type, and true HEPA air filtration was 79 ± 24%, 61 ± 32%, and 51 ± 34%, respectively. Conclusions: The results from our study showed that intervention with PAFs was able to significantly decrease indoor PM2.5 derived from outdoor and indoor PM2.5 sources. The PAFs were also able to significantly reduce the infiltration of outdoor PM2.5. The results of this study provide insights into what types of major PM2.5 sources this community is exposed to and what degree of air quality and systolic blood pressure improvements are possible through the use of commercially available PAFs in a real-world setting.
RESUMO
Utilizing a mobile laboratory located >300 km away from wildfire smoke (WFS) sources, this study examined the systemic immune response profile, with a focus on neuroinflammatory and neurometabolomic consequences, resulting from inhalation exposure to naturally occurring wildfires in California, Arizona, and Washington in 2020. After a 20-day (4 h/day) exposure period in a mobile laboratory stationed in New Mexico, WFS-derived particulate matter (WFPM) inhalation resulted in significant neuroinflammation while immune activity in the peripheral (lung, bone marrow) appeared to be resolved in C57BL/6 mice. Importantly, WFPM exposure increased cerebrovascular endothelial cell activation and expression of adhesion molecules (VCAM-1 and ICAM-1) in addition to increased glial activation and peripheral immune cell infiltration into the brain. Flow cytometry analysis revealed proinflammatory phenotypes of microglia and peripheral immune subsets in the brain of WFPM-exposed mice. Interestingly, endothelial cell neuroimmune activity was differentially associated with levels of PECAM-1 expression, suggesting that subsets of cerebrovascular endothelial cells were transitioning to resolution of inflammation following the 20-day exposure. Neurometabolites related to protection against aging, such as NAD+ and taurine, were decreased by WFPM exposure. Additionally, increased pathological amyloid-beta protein accumulation, a hallmark of neurodegeneration, was observed. Neuroinflammation, together with decreased levels of key neurometabolites, reflect a cluster of outcomes with important implications in priming inflammaging and aging-related neurodegenerative phenotypes.
Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Material Particulado/toxicidade , Fumaça/efeitos adversos , Estados UnidosRESUMO
Natural product biosynthetic pathways are replete with enzymes repurposed for new catalytic functions. In some modular polyketide synthase (PKS) pathways, a GCN5-related N-acetyltransferase (GNAT)-like enzyme with an additional decarboxylation function initiates biosynthesis. Here, we probe two PKS GNAT-like domains for the dual activities of S-acyl transfer from coenzyme A (CoA) to an acyl carrier protein (ACP) and decarboxylation. The GphF and CurA GNAT-like domains selectively decarboxylate substrates that yield the anticipated pathway starter units. The GphF enzyme lacks detectable acyl transfer activity, and a crystal structure with an isobutyryl-CoA product analog reveals a partially occluded acyltransfer acceptor site. Further analysis indicates that the CurA GNAT-like domain also catalyzes only decarboxylation, and the initial acyl transfer is catalyzed by an unidentified enzyme. Thus, PKS GNAT-like domains are re-classified as GNAT-like decarboxylases. Two other decarboxylases, malonyl-CoA decarboxylase and EryM, reside on distant nodes of the superfamily, illustrating the adaptability of the GNAT fold.
Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Policetídeos/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de ProteínaRESUMO
Lead (Pb) exposure remains a major concern in the United States (US) and around the world, even following the removal of Pb from gasoline and other products. Environmental Pb exposures from aging infrastructure and housing stock are of particular concern to pregnant women, children, and other vulnerable populations. Exposures during sensitive periods of development are known to influence epigenetic modifications which are thought to be one mechanism of the Developmental Origins of Health and Disease (DOHaD) paradigm. To gain insights into early life Pb exposure-induced health risks, we leveraged neonatal dried bloodspots in a cohort of children from Michigan, US to examine associations between blood Pb levels and concomitant DNA methylation profiles (n = 96). DNA methylation analysis was conducted via the Infinium MethylationEPIC array and Pb levels were assessed via high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). While at-birth Pb exposure levels were relatively low (average 0.78 µg/dL, maximum of 5.27 ug/dL), we identified associations between DNA methylation and Pb at 33 CpG sites, with the majority (82%) exhibiting reduced methylation with increasing Pb exposure (q < 0.2). Biological pathways related to development and neurological function were enriched amongst top differentially methylated genes by p-value. In addition to increases/decreases in methylation, we also demonstrate that Pb exposure is related to increased variability in DNA methylation at 16 CpG sites. More work is needed to assess the accuracy and precision of metals assessment using bloodspots, but this study highlights the utility of this unique resource to enhance environmental epigenetics research around the world.
Assuntos
Metilação de DNA , Epigênese Genética , Chumbo , Efeitos Tardios da Exposição Pré-Natal , Criança , Epigenômica , Feminino , Humanos , Recém-Nascido , Chumbo/sangue , Chumbo/toxicidade , Masculino , Michigan , Triagem Neonatal , GravidezRESUMO
The adverse health effects of fine particulate matter (PM < 2.5 µm in diameter [PM2.5]) air pollution are well-documented. There is a growing body of evidence that high-efficiency particulate arrestance (HEPA) filtration can reduce indoor PM2.5 concentrations and deliver some health benefits via the reduction of exposure to PM. However, few studies have tested the ability of portable air filtration systems to lower overall personal-level PM2.5 exposures. The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal PM2.5 exposure reductions via indoor portable air filtration systems among senior citizens in Detroit, Michigan. We evaluated the utility of two commercially available high-efficiency (HE: true-HEPA) and low-efficiency (LE: HEPA-type) indoor air filtration to reduce indoor PM2.5 concentrations and personal PM2.5 exposures for 40 participants in a double-blinded randomized crossover intervention. Each participant was subjected to three intervention scenarios: HE, LE, or no filter (control) of three consecutive days each, during which personal, indoor, and outdoor PM2.5 concentrations were measured daily. For mean indoor PM2.5 concentrations, we observed 60 and 52% reductions using HE and LE filters, respectively, relative to no filtration. Personal PM2.5 exposures were reduced by 53 and 31% using HE and LE filters, respectively, when compared with the control scenario. To our knowledge, this is the first indoor air filtration intervention study to examine the effectiveness of both HE and LE filters in reducing personal PM2.5 exposures.