Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell ; 27(3): 485-512, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25770107

RESUMO

A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism.


Assuntos
Padrões de Herança/genética , Locos de Características Quantitativas/genética , Metabolismo Secundário/genética , Solanum/genética , Solanum/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Endogamia , Espectrometria de Massas , Metaboloma/genética , Metabolômica , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Reprodutibilidade dos Testes , Solanum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
2.
Bioinformatics ; 32(17): i755-i762, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587698

RESUMO

MOTIVATION: Understanding the rerouting of metabolic reaction fluxes upon perturbations has the potential to link changes in molecular state of a cellular system to alteration of growth. Yet, differential flux profiling on a genome-scale level remains one of the biggest challenges in systems biology. This is particularly relevant in plants, for which fluxes in autotrophic growth necessitate time-consuming instationary labeling experiments and costly computations, feasible for small-scale networks. RESULTS: Here we present a computationally and experimentally facile approach, termed iReMet-Flux, which integrates relative metabolomics data in a metabolic model to predict differential fluxes at a genome-scale level. Our approach and its variants complement the flux estimation methods based on radioactive tracer labeling. We employ iReMet-Flux with publically available metabolic profiles to predict reactions and pathways with altered fluxes in photo-autotrophically grown Arabidopsis and four photorespiratory mutants undergoing high-to-low CO2 acclimation. We also provide predictions about reactions and pathways which are most strongly regulated in the investigated experiments. The robustness and variability analyses, tailored to the formulation of iReMet-Flux, demonstrate that the findings provide biologically relevant information that is validated with external measurements of net CO2 exchange and biomass production. Therefore, iReMet-Flux paves the wave for mechanistic dissection of the interplay between pathways of primary and secondary metabolisms at a genome-scale. AVAILABILITY AND IMPLEMENTATION: The source code is available from the authors upon request. CONTACT: nikoloski@mpimp-golm.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Metabolômica , Modelos Biológicos , Previsões , Genoma , Biologia de Sistemas
3.
Plant J ; 81(5): 822-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600836

RESUMO

Flux phenotypes predicted by constraint-based methods can be refined by the inclusion of heterogeneous data. While recent advances facilitate the integration of transcriptomics and proteomics data, purely stoichiometry-based approaches for the prediction of flux phenotypes by considering metabolomics data are lacking. Here we propose a constraint-based method, termed TREM-Flux, for integrating time-resolved metabolomics and transcriptomics data. We demonstrate the applicability of TREM-Flux in the dissection of the metabolic response of Chlamydomonas reinhardtii to rapamycin treatment by integrating the expression levels of 982 genes and the content of 45 metabolites obtained from two growth conditions. The findings pinpoint cysteine and methionine metabolism to be most affected by the rapamycin treatment. Our study shows that the integration of time-resolved unlabeled metabolomics data in addition to transcriptomics data can specify the metabolic pathways involved in the system's response to a studied treatment.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Metabolômica , Proteômica , Sirolimo/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Redes e Vias Metabólicas , Modelos Biológicos
4.
Plant Cell ; 25(6): 1917-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23749845

RESUMO

Plant behaviors across levels of cellular organization, from biochemical components to tissues and organs, relate and reflect growth habitats. Quantification of the relationship between behaviors captured in various phenotypic characteristics and growth habitats can help reveal molecular mechanisms of plant adaptation. The aim of this article is to introduce the power of using statistics originally developed in the field of geographic variability analysis together with prominent network models in elucidating principles of biological organization. We provide a critical systematic review of the existing statistical and network-based approaches that can be employed to determine patterns of covariation from both uni- and multivariate phenotypic characteristics in plants. We demonstrate that parameter-independent network-based approaches result in robust insights about phenotypic covariation. These insights can be quantified and tested by applying well-established statistics combining the network structure with the phenotypic characteristics. We show that the reviewed network-based approaches are applicable from the level of genes to the study of individuals in a population of Arabidopsis thaliana. Finally, we demonstrate that the patterns of covariation can be generalized to quantifiable biological principles of organization. Therefore, these network-based approaches facilitate not only interpretation of large-scale data sets, but also prediction of biochemical and biological behaviors based on measurable characteristics.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Modelos Estatísticos , Plantas/genética , Plantas/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Fenótipo , Transdução de Sinais
5.
Planta ; 242(3): 677-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26007687

RESUMO

MAIN CONCLUSION: Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.


Assuntos
Capsicum/metabolismo , Capsicum/fisiologia , Fotossíntese/fisiologia , Fotossíntese/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
6.
Plant Physiol ; 162(1): 347-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515278

RESUMO

Natural genetic diversity provides a powerful tool to study the complex interrelationship between metabolism and growth. Profiling of metabolic traits combined with network-based and statistical analyses allow the comparison of conditions and identification of sets of traits that predict biomass. However, it often remains unclear why a particular set of metabolites is linked with biomass and to what extent the predictive model is applicable beyond a particular growth condition. A panel of 97 genetically diverse Arabidopsis (Arabidopsis thaliana) accessions was grown in near-optimal carbon and nitrogen supply, restricted carbon supply, and restricted nitrogen supply and analyzed for biomass and 54 metabolic traits. Correlation-based metabolic networks were generated from the genotype-dependent variation in each condition to reveal sets of metabolites that show coordinated changes across accessions. The networks were largely specific for a single growth condition. Partial least squares regression from metabolic traits allowed prediction of biomass within and, slightly more weakly, across conditions (cross-validated Pearson correlations in the range of 0.27-0.58 and 0.21-0.51 and P values in the range of <0.001-<0.13 and <0.001-<0.023, respectively). Metabolic traits that correlate with growth or have a high weighting in the partial least squares regression were mainly condition specific and often related to the resource that restricts growth under that condition. Linear mixed-model analysis using the combined metabolic traits from all growth conditions as an input indicated that inclusion of random effects for the conditions improves predictions of biomass. Thus, robust prediction of biomass across a range of conditions requires condition-specific measurement of metabolic traits to take account of environment-dependent changes of the underlying networks.


Assuntos
Arabidopsis/fisiologia , Carbono/metabolismo , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biomassa , Meio Ambiente , Genótipo , Modelos Estatísticos , Fenótipo , Análise de Regressão
7.
J Biol Chem ; 287(14): 11122-31, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334689

RESUMO

Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.


Assuntos
Arabidopsis/citologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Modelos Biológicos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Senescência Celular/efeitos da radiação , Escuridão , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
8.
BMC Genomics ; 11: 411, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20594336

RESUMO

BACKGROUND: Protein phosphorylation is an important post-translational modification influencing many aspects of dynamic cellular behavior. Site-specific phosphorylation of amino acid residues serine, threonine, and tyrosine can have profound effects on protein structure, activity, stability, and interaction with other biomolecules. Phosphorylation sites can be affected in diverse ways in members of any species, one such way is through single nucleotide polymorphisms (SNPs). The availability of large numbers of experimentally identified phosphorylation sites, and of natural variation datasets in Arabidopsis thaliana prompted us to analyze the effect of non-synonymous SNPs (nsSNPs) onto phosphorylation sites. RESULTS: From the analyses of 7,178 experimentally identified phosphorylation sites we found that: (i) Proteins with multiple phosphorylation sites occur more often than expected by chance. (ii) Phosphorylation hotspots show a preference to be located outside conserved domains. (iii) nsSNPs affected experimental phosphorylation sites as much as the corresponding non-phosphorylated amino acid residues. (iv) Losses of experimental phosphorylation sites by nsSNPs were identified in 86 A. thaliana proteins, among them receptor proteins were overrepresented.These results were confirmed by similar analyses of predicted phosphorylation sites in A. thaliana. In addition, predicted threonine phosphorylation sites showed a significant enrichment of nsSNPs towards asparagines and a significant depletion of the synonymous substitution. Proteins in which predicted phosphorylation sites were affected by nsSNPs (loss and gain), were determined to be mainly receptor proteins, stress response proteins and proteins involved in nucleotide and protein binding. Proteins involved in metabolism, catalytic activity and biosynthesis were less affected. CONCLUSIONS: We analyzed more than 7,100 experimentally identified phosphorylation sites in almost 4,300 protein-coding loci in silico, thus constituting the largest phosphoproteomics dataset for A. thaliana available to date. Our findings suggest a relatively high variability in the presence or absence of phosphorylation sites between different natural accessions in receptor and other proteins involved in signal transduction. Elucidating the effect of phosphorylation sites affected by nsSNPs on adaptive responses represents an exciting research goal for the future.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , DNA de Plantas/genética , Polimorfismo de Nucleotídeo Único , Proteoma/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/química , Proteoma/genética
9.
Pest Manag Sci ; 76(10): 3377-3388, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32034864

RESUMO

BACKGROUND: Aclonifen is a unique diphenyl ether herbicide. Despite its structural similarities to known inhibitors of the protoporphyrinogen oxidase (e.g. acifluorfen, bifenox or oxadiazon), which result in leaf necrosis, aclonifen causes a different phenotype that is described as bleaching. This also is reflected by the Herbicide Resistance Action Committee (HRAC) classification that categorizes aclonifen as an inhibitor of pigment biosynthesis with an unknown target. RESULTS: A comprehensive Arabidopsis thaliana RNAseq dataset comprising 49 different inhibitor treatments and covering 40 known target pathways was used to predict the aclonifen mode of action (MoA) by a random forest classifier. The classifier predicts for aclonifen a MoA within the carotenoid biosynthesis pathway similar to the reference compound norflurazon that inhibits the phytoene desaturase. Upon aclonifen treatment, the phytoene desaturation reaction is disturbed, resulting in a characteristic phytoene accumulation in vivo. However, direct enzyme inhibition by the herbicide was excluded for known herbicidal targets such as phytoene desaturase, 4-hydroxyphenylpyruvate dioxygenase and homogentisate solanesyltransferase. Eventually, the solanesyl diphosphate synthase (SPS), providing one of the two homogentisate solanesyltransferase substrate molecules, could be identified as the molecular target of aclonifen. Inhibition was confirmed using biochemical activity assays for the A. thaliana SPSs 1 and 2. Furthermore, a Chlamydomonas reinhardtii homolog was used for co-crystallization of the enzyme-inhibitor complex, showing that one inhibitor molecule binds at the interface between two protein monomers. CONCLUSION: Solanesyl diphosphate synthase was identified as the target of aclonifen, representing a novel mode of action for herbicides. © 2020 Society of Chemical Industry.


Assuntos
Compostos de Anilina/farmacologia , Alquil e Aril Transferases , Resistência a Herbicidas , Herbicidas
10.
Nat Commun ; 10(1): 4552, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591397

RESUMO

Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Carbono/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Proteômica/métodos , Água do Mar/microbiologia , Transdução de Sinais/genética
11.
Nat Commun ; 7: 13255, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759015

RESUMO

Maintenance of functionality of complex cellular networks and entire organisms exposed to environmental perturbations often depends on concentration robustness of the underlying components. Yet, the reasons and consequences of concentration robustness in large-scale cellular networks remain largely unknown. Here, we derive a necessary condition for concentration robustness based only on the structure of networks endowed with mass action kinetics. The structural condition can be used to design targeted experiments to study concentration robustness. We show that metabolites satisfying the necessary condition are present in metabolic networks from diverse species, suggesting prevalence of this property across kingdoms of life. We also demonstrate that our predictions about concentration robustness of energy-related metabolites are in line with experimental evidence from Escherichia coli. The necessary condition is applicable to mass action biological systems of arbitrary size, and will enable understanding the implications of concentration robustness in genetic engineering strategies and medical applications.


Assuntos
Simulação por Computador , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Oxirredução
12.
Front Plant Sci ; 6: 49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741348

RESUMO

Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data.

13.
Trends Plant Sci ; 20(5): 266-268, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791509

RESUMO

Recent analyses have demonstrated that plant metabolic networks do not differ in their structural properties and that genes involved in basic metabolic processes show smaller coexpression than genes involved in specialized metabolism. By contrast, our analysis reveals differences in the structure of plant metabolic networks and patterns of coexpression for genes in (non)specialized metabolism. Here we caution that conclusions concerning the organization of plant metabolism based on network-driven analyses strongly depend on the computational approaches used.


Assuntos
Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Plantas/genética
14.
PLoS One ; 9(8): e103637, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105292

RESUMO

The accumulation of high-throughput data from different experiments has facilitated the extraction of condition-specific networks over the same set of biological entities. Comparing and contrasting of such multiple biological networks is in the center of differential network biology, aiming at determining general and condition-specific responses captured in the network structure (i.e., included associations between the network components). We provide a novel way for comparison of multiple networks based on determining network clustering (i.e., partition into communities) which is optimal across the set of networks with respect to a given cluster quality measure. To this end, we formulate the optimization-based problem of concurrent conditional clustering of multiple networks, termed COCONETS, based on the modularity. The solution to this problem is a clustering which depends on all considered networks and pinpoints their preserved substructures. We present theoretical results for special classes of networks to demonstrate the implications of conditionality captured by the COCONETS formulation. As the problem can be shown to be intractable, we extend an existing efficient greedy heuristic and applied it to determine concurrent conditional clusters on coexpression networks extracted from publically available time-resolved transcriptomics data of Escherichia coli under five stresses as well as on metabolite correlation networks from metabolomics data set from Arabidopsis thaliana exposed to eight environmental conditions. We demonstrate that the investigation of the differences between the clustering based on all networks with that obtained from a subset of networks can be used to quantify the specificity of biological responses. While a comparison of the Escherichia coli coexpression networks based on seminal properties does not pinpoint biologically relevant differences, the common network substructures extracted by COCONETS are supported by existing experimental evidence. Therefore, the comparison of multiple networks based on concurrent conditional clustering offers a novel venue for detection and investigation of preserved network substructures.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Modelos Teóricos , Software , Arabidopsis , Análise por Conglomerados , Escherichia coli , Perfilação da Expressão Gênica/métodos , Metaboloma/fisiologia
15.
Nat Commun ; 5: 3537, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24675291

RESUMO

Growth often involves a trade-off between the performance of contending tasks; metabolic plasticity can play an important role. Here we grow 97 Arabidopsis thaliana accessions in three conditions with a differing supply of carbon and nitrogen and identify a trade-off between two tasks required for rosette growth: increasing the physical size and increasing the protein concentration. We employ the Pareto performance frontier concept to rank accessions based on their multitask performance; only a few accessions achieve a good trade-off under all three growth conditions. We determine metabolic efficiency in each accession and condition by using metabolite levels and activities of enzymes involved in growth and protein synthesis. We demonstrate that accessions with high metabolic efficiency lie closer to the performance frontier and show increased metabolic plasticity. We illustrate how public domain data can be used to search for additional contending tasks, which may underlie the sub-optimality in some accessions.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biomassa , Carbono/metabolismo , Nitrogênio/metabolismo
16.
Sci Rep ; 4: 5067, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24861081

RESUMO

Seed metabolites are critically important both for plant development and human nutrition; however, the natural variation in their levels remains poorly characterized. Here we profiled 121 metabolites in mature seeds of a wide panel Oryza sativa japonica and indica cultivars, revealing correlations between the metabolic phenotype and geographic origin of the rice seeds. Moreover, japonica and indica subspecies differed significantly not only in the relative abundances of metabolites but also in their corresponding metabolic association networks. These findings provide important insights into metabolic adaptation in rice subgroups, bridging the gap between genome and phenome, and facilitating the identification of genetic control of metabolic properties that can serve as a basis for the future improvement of rice quality via metabolic engineering.


Assuntos
Engenharia Metabólica , Metabolômica , Oryza/metabolismo , Sementes/metabolismo , Produtos Agrícolas , Variação Genética , Humanos , Oryza/genética , Sementes/genética
17.
BMC Syst Biol ; 6: 16, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409942

RESUMO

BACKGROUND: Flux balance analysis (FBA) together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. RESULTS: Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed) metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. CONCLUSIONS: Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.


Assuntos
Redes e Vias Metabólicas , Biologia de Sistemas/métodos , Metabolismo dos Carboidratos , Cinética , Metaboloma , Plantas/metabolismo , Fatores de Tempo
18.
Front Plant Sci ; 3: 217, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056002

RESUMO

High-throughput phenotyping technologies in combination with genetic variability for the plant model species Arabidopsis thaliana (Arabidopsis) offer an excellent experimental platform to reveal the effects of different gene combinations on phenotypes. These developments have been coupled with computational approaches to extract information not only from the multidimensional data, capturing various levels of biochemical organization, but also from various morphological and growth-related traits. Nevertheless, the existing methods usually focus on data aggregation which may neglect accession-specific effects. Here we argue that revealing the molecular mechanisms governing a desired set of output traits can be performed by ranking of accessions based on their efficiencies relative to all other analyzed accessions. To this end, we propose a framework for evaluating accessions via their relative efficiencies which establish a relationship between multidimensional system's inputs and outputs from different environmental conditions. The framework combines data envelopment analysis (DEA) with a novel valency index characterizing the difference in congruence between the efficiency rankings of accessions under various conditions. We illustrate the advantages of the proposed approach for analyzing genetic variability on a publicly available data set comprising quantitative data on metabolic and morphological traits for 23 Arabidopsis accessions under three conditions of nitrogen availability. In addition, we extend the proposed framework to identify the set of traits displaying the highest influence on ranking based on the relative efficiencies of the considered accessions. As an outlook, we discuss how the proposed framework can be combined with well-established statistical techniques to further dissect the relationship between natural variability and metabolism.

19.
Nat Commun ; 3: 1319, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271653

RESUMO

Understanding molecular factors determining local adaptation is a key challenge, particularly relevant for plants, which are sessile organisms coping with a continuously fluctuating environment. Here we introduce a rigorous network-based approach for investigating the relation between geographic location of accessions and heterogeneous molecular phenotypes. We demonstrate for Arabidopsis accessions that not only genotypic variability but also flowering and metabolic phenotypes show a robust pattern of isolation-by-distance. Our approach opens new avenues to investigate relations between geographic origin and heterogeneous molecular phenotypes, like metabolite profiles, which can easily be obtained in species where genome data is not yet available.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Biodiversidade , Europa (Continente) , Genótipo , Geografia , Fenótipo
20.
Phytochemistry ; 72(10): 1061-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20952039

RESUMO

Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific "omics" data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Proteômica , Biologia de Sistemas , Arabidopsis/química , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA