Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Acc Chem Res ; 57(5): 726-738, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387878

RESUMO

ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.

2.
Chemistry ; : e202401377, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738789

RESUMO

(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.

3.
Angew Chem Int Ed Engl ; 63(26): e202403651, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619179

RESUMO

We report a user-friendly approach for the decarboxylative formation of stereodefined and complex tri- and tetra-substituted olefins from vinyl cyclic carbonates and amines as radical precursors. The protocol relies on easy photo-initiated α-amino-radical formation followed by addition onto the double bond of the substrate resulting in a sequence involving carbonate ring-opening, double bond relay, CO2 extrusion and finally O-protonation. The developed protocol is efficient for both mismatched and matched polarity substrate combinations, and the scope of elaborate stereodefined olefins that can be forged including drug-functionalized derivatives is wide, diverse and further extendable to other types of heterocyclic and radical precursors. Mechanistic control reactions show that the decarboxylation step is a key driving force towards product formation, with the initial radical addition under steric control.

4.
J Am Chem Soc ; 145(11): 6442-6452, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883980

RESUMO

Metal-catalyzed propargylic transformations represent a powerful tool in organic synthesis to achieve new carbon-carbon and carbon-heteroatom bonds. However, detailed knowledge about the mechanistic intricacies related to the asymmetric formation of propargylic products featuring challenging heteroatom-substituted tertiary stereocenters is scarce and therefore provides an inspiring challenge. Here, we present a meticulous mechanistic analysis of a propargylic sulfonylation reaction promoted by a chiral Cu catalyst through a combination of experimental techniques and computational studies. Surprisingly, the enantio-discriminating step is not the coupling between the nucleophile and the propargylic precursor but rather the following proto-demetalation step, a scenario further validated by computing enantio-induction levels under other previously reported experimental conditions. A full mechanistic scenario for this propargylic substitution reaction is provided, including a catalyst pre-activation stage, a productive catalytic cycle, and an unanticipated non-linear effect at the Cu(I) oxidation level.

5.
Acc Chem Res ; 55(12): 1634-1645, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648973

RESUMO

The introduction of circular principles in chemical manufacturing will drastically change the way everyday plastics are produced, thereby affecting several aspects of the respective value chains in terms of raw feedstock, recyclability, and cost. The ultimate aim is to ensure a paradigm shift toward plastic-based (consumer) materials that overall can offer a more attractive and sustainable carbon footprint, which is an important requisite from a societal, political, and eventually economical point of view. To realize this important milestone, it is vitally important to control the polymerization processes associated with the creation of novel sustainable materials. In this respect, we realized that expanding the portfolio of biomass-derived monomers may indeed create an impetus for atom circularity; however, the often sterically congested nature of biomass-derived monomers minimizes the ability of previously developed catalysts to activate and transform these precursors. Our motivation was thus spurred by an apparent lack of catalysts suitable for addressing the conversion of such biomonomers, as we realized the potential that new catalytic processes could have to advance and contribute to the development of sustainable materials produced from polycarbonates and polyesters. These two classes of polymers represent crucial ingredients of important and large-scale consumer products and are therefore ideal fits for implementing new catalytic protocols that enable a gradual transition to plastic materials with an improved carbon footprint.When we started our research expedition, the field was dominated by metal catalysts that incorporated preferred, and in some cases even privileged, ligand backbones (such as salens) able to mediate both ring-opening and ring-opening copolymerization manifolds. One major drawback of these aforementioned catalysts is their rather rigid nature, a feature that reduces their ability to act as adaptive systems, especially in cases where bulky monomers are involved. While our initial focus was on the utilization of sustainable metal salen complexes (M = Zn, Fe) for the activation of small cyclic ethers, which are privileged monomers for polyester and polycarbonate production, we were rapidly confronted with severe limitations related to their inability to activate a wider range of complex epoxides and oxetanes, which was imparted by the planar coordination geometry of the salen ligand in most of its applied metal complexes. In our quest to find a catalytically more effective metal complex with the ability to electronically and sterically tune its substrate-binding and substrate-activation potential, we identified aminotriphenolates as structurally versatile, easily accessible, and scalable ligands for various earth-abundant metal cations. Moreover, the ligand backbone allows for switchable coordination environments around the metal centers, thus offering the necessary adaptation in substrate activation events.This Account describes how Al(III)- and Fe(III)-centered aminotriphenolates have conquered a prominent position as catalyst components in the synthesis of new biobased polyester and polycarbonate architectures, thereby changing the landscape of previously difficult to convert biomonomers, and expanding the chemical space of biobased functional polymers. With the ever-increasing influence of legislation and the restrictions placed on the use of fossil-fuel-based feedstock, the polymer industry needs viable alternatives to design materials that are greener, cost-effective, and allow for the exploration and optimization of their recycling and properties.


Assuntos
Complexos de Coordenação , Poliésteres , Biomassa , Compostos Férricos , Ligantes , Metais , Plásticos , Cimento de Policarboxilato , Polímeros/química
6.
Angew Chem Int Ed Engl ; 62(11): e202217803, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637337

RESUMO

A conceptually novel catalytic domino approach is presented for the synthesis of highly functional 1,4-dihydro-2H-1,3-benzoxazine-2-one derivatives. Key to the chemoselectivity is a proper design of the precursor to override thermodynamically favored parasitic cyclization processes and empower the formation of the desired product through Thorpe-Ingold effects. The synthetic diversity of these CO2 -based heterocycles is further demonstrated, and the isolation of a reaction intermediate supports an unusual ring-expansion sequence from an α-alkylidene, five-membered cyclic carbonate to a six-membered cyclic carbamate by N-induced isomerization.

7.
Angew Chem Int Ed Engl ; 62(50): e202314865, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37931062

RESUMO

Asymmetric synthesis of small molecules comprising quaternary stereogenic carbon centers represents a challenging objective. Here regio- and enantioselective synthesis of chiral 1,5-dienes featuring quaternary stereocenters is reported via nickel-promoted by reductive homoallylic coupling. The developed methodology features an atypical preference for the formation of unusual branched regioisomers (rr >20 : 1) in a sterically challenging allylic substitution event and furnishes the products with enantiomeric ratios of up to 98 : 2 and with high chemo- and E-selectivity. A range of experimental evidences suggest that zinc plays a dual role to generate electrophilic and nucleophilic Ni(II)-allyl intermediates empowering a unique formal bimetallic cross-electrophile manifold in two separate kinetic regimes.

8.
Angew Chem Int Ed Engl ; 62(51): e202314659, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37934031

RESUMO

We here report the organocatalytic and temperature-controlled depolymerization of biobased poly(limonene carbonate) providing access to its trans-configured cyclic carbonate as the major product. The base TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) offers a unique opportunity to break down polycarbonates via end-group activation or main chain scission pathways as supported by various controls and computational analysis. These energetically competitive processes represent an unprecedented divergent approach to polycarbonate recycling. The trans limonene carbonate can be converted back to its polycarbonate via ring-opening polymerization using the same organocatalyst in the presence of an alcohol initiator, offering thus a potential circular and practical route for polycarbonate recycling.

9.
J Am Chem Soc ; 144(24): 10912-10920, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675904

RESUMO

Metallaphotoredox chemistry has recently witnessed a surge in interest within the field of synthetic organic chemistry through the use of abundant first-row transition metals combined with suitable photocatalysts. The intricate details arising from the combination of two (or more) catalytic components during the reaction and especially the inter-catalyst interactions remain poorly understood. As a representative example of a catalytic process featuring such intricacies, we here present a meticulous study of the mechanism of a cobalt-organophotoredox catalyzed allylation of aldehydes. Importantly, the commonly proposed elementary steps in reductive metallaphotoredox chemistry are more complex than previously assumed. After initial reductive quenching, a transient charge-transfer complex forms that interacts with both the transition-metal catalyst and the catalytic base. Surprisingly, the former interaction leads to deactivation due to induced charge recombination, while the latter promotes deprotonation of the electron donor, which is the crucial step to initiate productive catalysis but is often neglected. Due to the low efficiency of this latter process, the overall catalytic reaction is photon-limited and the cobalt catalyst remains in a dual resting state, awaiting photoinduced reduction. These new insights are of general importance to the synthetic community, as metallaphotoredox chemistry has become a powerful tool used in the formation of elusive compounds through carbon-carbon bond formations. Understanding the underlying aspects that determine the efficiency of such reactions provides a conceptually stronger reactivity paradigm to empower future approaches to synthetic challenges that rely on dual metallaphotoredox catalysis.


Assuntos
Aldeídos , Carbono , Aldeídos/química , Carbono/química , Catálise , Cobalto
10.
Angew Chem Int Ed Engl ; 61(27): e202205053, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441777

RESUMO

A new catalytic route has been developed for the coupling of epoxides and CO2 affording polymerizable six-membered bicyclic carbonates. Cyclic epoxides equipped with a ß-positioned OH group can be transformed into structurally diverse bicyclic cyclic carbonates in good yields and with high selectivity. Key to the chemo-selectivity is the difference between the reactivity of syn- and anti-configured epoxy alcohols, with the latter leading to six-membered ring carbonate formation in the presence of a binary AlIII aminotriphenolate complex/DIPEA catalyst. X-ray analyses show that the conversion of the syn-configured substrate evolves via a standard double inversion pathway providing a five-membered carbonate product, whereas the anti-isomer allows for activation of the oxirane unit of the substrate opposite to the pendent alcohol. The potential use of these bicyclic products is shown in ring-opening polymerization offering access to rigid polycarbonates with improved thermal resistance.

11.
Chemistry ; 27(39): 10107-10114, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33955608

RESUMO

The challenging metal-catalyzed asymmetric synthesis of highly functional quaternary carbon centers using decarboxylative C(sp3 )-C(sp3 ) bond formation reactions is reported. The key substrate, a vinyl cyclic carbonate, is activated to provide concomitantly both the requisite nucleophile (by formal umpolung) and electrophile reaction partner preceding the asymmetric cross-coupling process. A wide screening of reaction conditions, additives and catalyst precursors afforded a protocol that gave access to a series of compounds featuring densely functionalized, elusive quaternary carbon stereocenters in appreciable yield and with enantiomeric ratios (er's) of up to 90 : 10.

12.
Angew Chem Int Ed Engl ; 60(9): 4901-4906, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230901

RESUMO

A mild copper-mediated protocol has been developed for borylation of alkynyl cyclic carbonates. Depending on the nature of the borylating reaction partner, either stereoselective diborylation of the propargylic surrogate takes place, providing convenient access to (E)-1,2-borylated 1,3-dienes, or traceless monoborylation occurs, which leads to α-hydroxyallenes as the principal product. The dichotomy in this borylation protocol has been scrutinized by several control experiments, illustrating that a relatively small change in the diboron(4) reagent allows for competitive alcohol-assisted protodemetalation to forge an α-hydroxyallene product under ambient conditions.

13.
Angew Chem Int Ed Engl ; 60(28): 15266-15270, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860978

RESUMO

An efficient and attractive Co/organophotoredox dual catalysis protocol has been developed allowing the stereoselective access to a wide variety of syn-configured 1,3-diols featuring quaternary carbon centers. The synthesis of the target molecules is achieved under ambient reaction conditions using modular and accessible reagents, substituted vinyl cyclic carbonates and aldehydes, and in short reaction times. Mechanistic control experiments suggest that the stereoselectivity can be rationalized via a preferred Zimmerman-Traxler transition state comprising a Co(allyl) species and an activated aldehyde. This newly developed process thus expands the use of base metal catalysis in the construction of challenging quaternary carbon stereocenters.

14.
Chem Soc Rev ; 48(16): 4466-4514, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31276137

RESUMO

Carbon dioxide offers an accessible, cheap and renewable carbon feedstock for synthesis. Current interest in the area of carbon dioxide valorisation aims at new, emerging technologies that are able to provide new opportunities to turn a waste into value. Polymers are among the most widely produced chemicals in the world greatly affecting the quality of life. However, there are growing concerns about the lack of reuse of the majority of the consumer plastics and their after-life disposal resulting in an increasing demand for sustainable alternatives. New monomers and polymers that can address these issues are therefore warranted, and merging polymer synthesis with the recycling of carbon dioxide offers a tangible route to transition towards a circular economy. Here, an overview of the most relevant and recent approaches to CO2-based monomers and polymers are highlighted with particular emphasis on the transformation routes used and their involved manifolds.

15.
Angew Chem Int Ed Engl ; 59(42): 18446-18451, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33439507

RESUMO

A conceptually novel approach is described for the synthesis of six-membered cyclic carbonates derived from carbon dioxide. The approach utilizes homoallylic precursors that are converted into five-membered cyclic carbonates having a ß-positioned alcohol group in one of the ring substituents. The activation of the pendent alcohol group through an N-heterocyclic base allows equilibration towards a thermodynamically disfavored six-membered carbonate analogue that can be trapped by an acylating agent. Various control experiments and computational analysis of this manifold are in line with a process that is primarily dictated by a kinetically controlled acylation step. This cascade process delivers an ample diversity of six-membered cyclic carbonates in excellent yields and chemoselectivities under mild reaction conditions.

16.
Chemistry ; 25(66): 15055-15058, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31574183

RESUMO

Cyclic carbonates have long been considered relatively inert molecules acting as protecting groups in complex multistep synthetic routes. This study shows that a concise, yet modular synthesis of indolizidine and quinolizidine alkaloids can be developed from vinyl-substituted cyclic carbonate (VCC) intermediates. Through a highly stereoselective palladium-catalyzed allylic alkylation reaction, these alkaloid motifs can be assembled in four synthetic and only two column purification steps. The combined results help to further advance functionalized cyclic carbonates as useful and reactive intermediates in natural product synthesis.

17.
Angew Chem Int Ed Engl ; 58(42): 14944-14949, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31394028

RESUMO

We describe here the first general asymmetric synthesis of sterically encumbered α,α-disubstituted allylic sulfones via Pd-catalyzed allylic substitution. The design and application of a new and highly efficient phosphoramidite ligand (L10) proved to be crucial, and a wide variety of challenging allylic sulfones featuring quaternary stereocenters could be obtained in good yields and with good to excellent levels of regio- and enantioselectivities under attractive process conditions. The developed methodology employs easily accessible chemical feedstock including racemic allylic precursors and sodium sulfinates. The utility of the method is further demonstrated by the synthesis of the sesquiterpene (-)-Agelasidine A.

18.
Angew Chem Int Ed Engl ; 58(41): 14694-14702, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31393071

RESUMO

A recently reported palladium-catalyzed allylic substitution of vinyl-substituted cyclic carbonates (VCCs) with aryl amines represents a rare example of a regio- and enantioselective synthesis of α,α-disubstituted allylic N-aryl amines. However, the underlying reasons for this unusual selectivity profile remain elusive. In the present work, density functional theory (DFT) calculations in combination with mechanistic control experiments were performed to elucidate in detail this allylic amination manifold and the origin of the regio- and enantioselectivity. The combined data show that after oxidative addition of the VCC to Pd0 , the nucleophilic attack via an originally proposed outer-sphere pathway gives, however, the opposite regioisomer compared to the experimental results. Instead, nucleophilic attack of the amine reagent via a unique type of chelation-assisted, inner-sphere pathway accounts for the experimentally observed "branched" regioselectivity and high enantio-control.

19.
Angew Chem Int Ed Engl ; 58(12): 3903-3907, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30663208

RESUMO

Tertiary propargylic sulfones are of significant importance in organic synthesis and medicinal chemistry, but to date no general asymmetric synthesis approach has been developed. We disclose a versatile copper-catalyzed sulfonylation of propargylic cyclic carbonates using sodium sulfinates that allows the construction of propargylic sulfones featuring elusive quaternary stereocenters. This method provides the first successful example of such an enantioselective propargylic sulfonylation, features high asymmetric induction, wide functional group tolerance, and scalability, and enables attractive product diversification.

20.
J Am Chem Soc ; 140(11): 3981-3987, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29337542

RESUMO

An efficient protocol was developed to construct functionally dense quaternary carbons with concomitant formation of a new Csp3-Csp3 bond via Pd-catalyzed decarboxylative transformation of vinyl cyclic carbonates. This redox-neutral catalytic system features stereocontrolled formation of multisubstituted allylic scaffolds with an aldehyde functionality generated in situ, and it typically can be performed at room temperature without any additives. DFT calculations provide a rationale toward the selective formation of these compounds and reveal a complex mechanism that with the help of microkinetic models is able to reproduce the nontrivial dependence of the identity of the product on the nature of the substituents in the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA