Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Struct Biol ; 212(3): 107649, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075486

RESUMO

HpAC1, a protein from Hippeastrum hybrid cultivars, was previously suggested to be a plant adenylyl cyclase. We describe a structural and enzymatic characterization of HpAC1. A crystal structure of HpAC1 in complex with a non-hydrolyzable GTP analog confirms a generic CYTH architecture, comprising a ß-barrel with an internal substrate site. The structure reveals significant active site differences to AC proteins with CYTH fold, however, and we find that HpAC1 lacks measurable AC activity. Instead, HpAC1 has substantial triphosphatase activity, indicating this protective activity or a related activity as the protein's physiological function.


Assuntos
Adenilil Ciclases/química , Amaryllidaceae/química , Proteínas de Plantas/química , Domínio Catalítico/fisiologia , Cristalografia por Raios X/métodos
2.
Nat Chem Biol ; 12(10): 838-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27547922

RESUMO

The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Pirimidinas/farmacologia , Tiofenos/farmacologia , Inibidores de Adenilil Ciclases/química , Adenilil Ciclases/química , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Solubilidade , Relação Estrutura-Atividade , Tiofenos/química
3.
J Biol Chem ; 291(18): 9776-84, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26961873

RESUMO

The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs.


Assuntos
Trifosfato de Adenosina/química , Adenilil Ciclases/química , Bicarbonatos/química , Bitionol/química , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Humanos
4.
Proc Natl Acad Sci U S A ; 111(10): 3727-32, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567411

RESUMO

cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3(-)); it thereby serves as a cellular sensor for HCO3(-), carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3(-) binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3(-) activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3(-) sensing and a basis for targeting this system with drugs.


Assuntos
Adenilil Ciclases/química , Ativação Enzimática/fisiologia , Modelos Moleculares , Conformação Proteica , Transdução de Sinais/genética , Bicarbonato de Sódio/metabolismo , Catálise , Clonagem Molecular , Cristalização , Ativação Enzimática/genética , Humanos , Ligação Proteica
5.
J Biol Chem ; 290(20): 12731-43, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25802331

RESUMO

Mycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins. Proteins with cyclic nucleotide binding and GAF domains can be identified in the genome of mycobacterial species, and some of them have been characterized. Here, we show that a significant fraction of intracellular cAMP is bound to protein in mycobacterial species, and by using affinity chromatography techniques, we identify specific universal stress proteins (USP) as abundantly expressed cAMP-binding proteins in slow growing as well as fast growing mycobacteria. We have characterized the biochemical and thermodynamic parameters for binding of cAMP, and we show that these USPs bind cAMP with a higher affinity than ATP, an established ligand for other USPs. We determined the structure of the USP MSMEG_3811 bound to cAMP, and we confirmed through structure-guided mutagenesis, the residues important for cAMP binding. This family of USPs is conserved in all mycobacteria, and we suggest that they serve as "sinks" for cAMP, making this second messenger available for downstream effectors as and when ATP levels are altered in the cell.


Assuntos
Trifosfato de Adenosina , Proteínas de Bactérias , AMP Cíclico , Proteínas de Choque Térmico , Mycobacterium , Sistemas do Segundo Mensageiro/fisiologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , AMP Cíclico/química , AMP Cíclico/metabolismo , Genoma Bacteriano , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mycobacterium/química , Mycobacterium/genética , Mycobacterium/metabolismo
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2297-308, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527146

RESUMO

The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes via an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that Mtb-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.


Assuntos
Antranilato Sintase/antagonistas & inibidores , Antranilato Sintase/química , Mycobacterium tuberculosis/enzimologia , Triptofano/metabolismo , Tuberculose/microbiologia , Antranilato Sintase/metabolismo , Vias Biossintéticas , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Nat Commun ; 12(1): 7069, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862384

RESUMO

Antibody drugs exert therapeutic effects via a range of mechanisms, including competitive inhibition, allosteric modulation, and immune effector mechanisms. Facilitated dissociation is an additional mechanism where antibody-mediated "disruption" of stable high-affinity macromolecular complexes can potentially enhance therapeutic efficacy. However, this mechanism is not well understood or utilized therapeutically. Here, we investigate and engineer the weak disruptive activity of an existing therapeutic antibody, omalizumab, which targets IgE antibodies to block the allergic response. We develop a yeast display approach to select for and engineer antibody disruptive efficiency and generate potent omalizumab variants that dissociate receptor-bound IgE. We determine a low resolution cryo-EM structure of a transient disruption intermediate containing the IgE-Fc, its partially dissociated receptor and an antibody inhibitor. Our results provide a conceptual framework for engineering disruptive inhibitors for other targets, insights into the failure in clinical trials of the previous high affinity omalizumab HAE variant and anti-IgE antibodies that safely and rapidly disarm allergic effector cells.


Assuntos
Imunoglobulina E/metabolismo , Omalizumab/farmacologia , Engenharia de Proteínas , Receptores de IgE/metabolismo , Animais , Membrana Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Voluntários Saudáveis , Humanos , Imunoglobulina E/ultraestrutura , Ligantes , Camundongos , Camundongos Transgênicos , Omalizumab/genética , Omalizumab/uso terapêutico , Cultura Primária de Células , Receptores de IgE/ultraestrutura , Células Sf9 , Spodoptera
8.
Nat Commun ; 11(1): 165, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913280

RESUMO

Targeting of immunoglobulin E (IgE) represents an interesting approach for the treatment of allergic disorders. A high-affinity monoclonal anti-IgE antibody, ligelizumab, has recently been developed to overcome some of the limitations associated with the clinical use of the therapeutic anti-IgE antibody, omalizumab. Here, we determine the molecular binding profile and functional modes-of-action of ligelizumab. We solve the crystal structure of ligelizumab bound to IgE, and report epitope differences between ligelizumab and omalizumab that contribute to their qualitatively distinct IgE-receptor inhibition profiles. While ligelizumab shows superior inhibition of IgE binding to FcεRI, basophil activation, IgE production by B cells and passive systemic anaphylaxis in an in vivo mouse model, ligelizumab is less potent in inhibiting IgE:CD23 interactions than omalizumab. Our data thus provide a structural and mechanistic foundation for understanding the efficient suppression of FcεRI-dependent allergic reactions by ligelizumab in vitro as well as in vivo.


Assuntos
Antialérgicos/administração & dosagem , Anticorpos Anti-Idiotípicos/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Hipersensibilidade/tratamento farmacológico , Omalizumab/administração & dosagem , Animais , Antialérgicos/química , Anticorpos Anti-Idiotípicos/química , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/química , Imunoglobulina E/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Omalizumab/química , Receptores de IgE/imunologia
9.
FEBS J ; 281(18): 4151-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040695

RESUMO

UNLABELLED: The ubiquitous second messenger cAMP regulates a wide array of functions, from bacterial transcription to mammalian memory. It is synthesized by six evolutionarily distinct adenylyl cyclase (AC) families. In mammals, there are two AC types: nine transmembrane ACs (tmACs) and one soluble AC (sAC). Both AC types belong to the widespread cyclase class III, which has members in numerous organisms from archaeons to mammals. Class III also contains all known guanylyl cyclases (GCs), which synthesize the cAMP-related messenger cGMP in many eukaryotes and possibly some prokaryotes. Among mammalian ACs, sAC is uniquely regulated by bicarbonate, and has been proposed to be more closely related to a bacterial AC subfamily than to mammalian ACs, on the basis of sequence comparisons. Here, we used crystal structures of human sAC catalytic domains to analyze its relationships with other class III ACs and GCs, and to study its substrate selection mechanisms. Structural comparisons revealed a similarity within an sAC-like subfamily but no family-specific structure elements, and an unexpected sAC similarity to eukaryotic GCs and a potential bacterial GC. We further solved novel crystal structures of sAC catalytic domains in complex with a substrate analog, unprocessed ATP substrate, and product after soaking with ATP or GTP. The structures show a novel ATP-binding conformation, and suggest mechanisms for substrate association and recognition. Our results could explain the limited substrate specificity of sAC, suggest how specificity is increased in other cyclases, and indicate evolutionary relationships among class III enzymes, with sAC being close to a putative 'ancestor' cyclase. DATABASE: Coordinates and structure factors for the novel sAC-cat structures described have been deposited with the Worldwide PDB (www.pdb.org): ApCpp soak (entry 4usu), ATP + Ca(2+) soak (entry 4usv), GTP + Mg(2+) soak (entry 4ust), ATP soak (entry 4usw).


Assuntos
Trifosfato de Adenosina/química , Adenilil Ciclases/química , Guanosina Trifosfato/química , Trifosfato de Adenosina/análogos & derivados , Sequência de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Células Cultivadas , Cristalografia por Raios X , Evolução Molecular , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Solubilidade , Especificidade por Substrato
10.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 467-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699740

RESUMO

The second messenger cAMP is synthesized in mammals by ten differently regulated adenylyl cyclases (AC1-10). These ACs are grouped into nucleotidyl cyclase class III based on homologies in their catalytic domains. The catalytic domain of AC10 is unique, however, in being activated through direct interaction with calcium and bicarbonate. Here, the production, crystallization and X-ray diffraction analysis of the catalytic domain of human AC10 are described as a basis for structural studies of regulator binding sites and mechanisms. The recombinant protein had high specific AC activity, and crystals of AC10 in space group P63 diffracted to ∼2.0 Šresolution on a synchrotron beamline. A complete diffraction data set revealed unit-cell parameters a = b = 99.65, c = 98.04 Å, indicating one AC10 catalytic domain per asymmetric unit, and confirmed that the obtained crystals are suitable for structure solution and mechanistic studies.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/isolamento & purificação , Cristalografia por Raios X/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalização , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA