Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Environ ; 34(9): 1577-85, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707648

RESUMO

Symbiotic and parasitic relationships can alter the degree of endoreduplication in plant cells, and a limited number of studies have documented this occurrence in root cells colonized by arbuscular mycorrhizal (AM) fungi. However, this phenomenon has not been tested in a wide range of plant species, including species that are non-endopolyploid and those that do not associate with AM fungi. We grew 37 species belonging to 16 plant families, with a range of genome sizes and a range in the degree of endopolyploidy. The endoreduplication index (EI) was compared between plants that were inoculated with Glomus irregulare and plants that were not inoculated. Of the species colonized with AM fungi, 22 of the 25 species had a significant increase in endopolyploid root nuclei over non-mycorrhizal plants, including species that do not normally exhibit endopolyploidy. Changes in the EI were strongly correlated (R(2) = 0.619) with the proportion of root length colonized by arbuscules. No change was detected in the EI for the 12 non-mycorrhizal species. This work indicates that colonization by symbiotic fungi involves a mechanism to increase nuclear DNA content in roots across many angiosperm groups and is likely linked to increased metabolism and protein production.


Assuntos
Endorreduplicação/fisiologia , Glomeromycota/fisiologia , Magnoliopsida/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/fisiologia , DNA de Plantas/análise , Tamanho do Genoma , Hifas , Magnoliopsida/microbiologia , Raízes de Plantas/microbiologia , Ploidias , Simbiose
2.
Oecologia ; 160(3): 433-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19271240

RESUMO

Allelochemicals defend plants against herbivore and pathogen attack aboveground and belowground. Whether such plant defenses incur ecological costs by reducing benefits from plant mutualistic symbionts is largely unknown. We explored a potential trade-off between inherent plant chemical defense and belowground mutualism with arbuscular mycorrhizal fungi (AMF) in Plantago lanceolata L., using plant genotypes from lines selected for low and high constitutive levels of the iridoid glycosides (IG) aucubin and catalpol. As selection was based on IG concentrations in leaves, we first examined whether IG concentrations covaried in roots. Root and leaf IG concentrations were strongly positively correlated among genotypes, indicating genetic interdependence of leaf and root defense. We then found that root AMF arbuscule colonization was negatively correlated with root aucubin concentration. This negative correlation was observed both in plants grown with monocultures of Glomus intraradices and in plants colonized from whole-field soil inoculum. Overall, AMF did not affect total biomass of plants; an enhancement of initial shoot biomass was offset by a lower root biomass and reduced regrowth after defoliation. Although the precise effects of AMF on plant biomass varied among genotypes, plants with high IG levels and low AMF arbuscule colonization in roots did not produce less biomass than plants with low IG and high AMF arbuscule colonization. Therefore, although an apparent trade-off was observed between high root chemical defense and AMF arbuscule colonization, this did not negatively affect the growth responses of the plants to AMF. Interestingly, AMF induced an increase in root aucubin concentration in the high root IG genotype of P. lanceolata. We conclude that AMF does not necessarily stimulate plant growth, that direct plant defense by secondary metabolites does not necessarily reduce potential benefits from AMF, and that AMF can enhance concentrations of root chemical defenses, but that these responses are plant genotype-dependent.


Assuntos
Iridoides/análise , Micorrizas/fisiologia , Folhas de Planta/química , Raízes de Plantas/química , Plantago/crescimento & desenvolvimento , Plantago/microbiologia , Simbiose , Análise de Variância , Plantago/genética , Solo/análise
3.
J Agric Food Chem ; 53(5): 1337-42, 2005 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-15740003

RESUMO

A method for quantification of recombinant DNA for Roundup Ready (RR) corn and RR soybean in soil samples is described. Soil DNA from experimental field samples was extracted using a soil DNA extraction kit with a modified protocol. For the detection and quantification of recombinant DNA of RR corn and RR soybean, a molecular beacon and two pairs of specific primers were designed to differentially target recombinant DNA in these two genetically modified crops. Soil DNA extracts were spiked with RR corn or RR soybean DNA, and recombinant DNA was quantified using real-time PCR with a molecular beacon. As few as one copy of RR corn genome or one copy of RR soybean genome was detected in the soil DNA extract.


Assuntos
Glycine max/genética , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , Solo/análise , Transgenes , Zea mays/genética , DNA de Plantas/análise , DNA Recombinante/análise , Proteínas de Fluorescência Verde/genética
4.
New Phytol ; 164(2): 365-373, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33873560

RESUMO

• Arbuscular mycorrhizal fungi (AMF) and roots mediate soil stabilization, although the mechanisms and how their interactions affect soil stabilization are not known. We tested the effects of specific plant-fungus combinations on aggregate stabilization, and whether hyphal length and root biomass determine stabilization, predicting that fungi producing more hyphae, and plants with higher root biomasses, would better stabilize soils. • The percentage of water-stable aggregates (%WSA1-2 mm ), hyphal lengths, and root biomass were measured from a five AMF × nine plant factorial experiment. Arbuscular mycorrhizal fungi with greater extradical mycelium production were represented by the Gigasporaceae and plants of high root biomass by grasses. Other taxa represented lower hyphal lengths and root biomass. • An interaction between symbionts with respect to %WSA1-2 mm was observed. Root biomass and total hyphal lengths were not positively correlated with %WSA. Combinations of grasses with Gigasporaceae fungi had the lowest %WSA. • Mechanisms underlying aggregation were not elucidated by measuring root biomass and total hyphal lengths alone, suggesting other physiological or architectural mechanisms may be responsible.

5.
J Microbiol Methods ; 82(2): 124-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20470836

RESUMO

A wide range of methods are commonly used for preserving environmental samples prior to molecular analyses. However, the effect of these preservation methods on fungal DNA is not understood. The objective of this study was to test the effect of eight different preservation methods on the quality and yield of DNA extracted from Bromus inermis and Daucus carota roots colonized by the arbuscular mycorrhizal (AM) fungus, Glomus intraradices. The total DNA concentration in sample extracts was quantified using spectrophotometry. Samples that were frozen (-80 masculineC and -20 masculineC), stored in 95% ethanol, or silica gel dried yielded total (plant and fungal) DNA concentrations that were not significantly different from fresh samples. In contrast, samples stored in CTAB solution or freeze-dried resulted in significantly reduced DNA concentrations compared with fresh samples. The preservation methods had no effect on the purity of the sample extracts for both plant species. However, the DNA of the dried samples (silica gel dried, freeze-dried, heat dried) appeared to be slightly more degraded compared with samples that remained hydrated (frozen, stored in ethanol or CTAB solutions) during storage when visualized on a gel. The concentration of AM fungal DNA in sample extracts was quantified using TaqMan real time PCR. Methods that preserved samples in hydrated form had similar AM fungal DNA concentrations as fresh samples, except D. carota samples stored in ethanol. In contrast, preservation methods that involved drying the samples had very low concentrations of AM fungal DNA for B. inermis, and nearly undetectable for D. carota samples. The drying process appears to be a major factor in the degradation of AM fungal DNA while having less of an impact on plant DNA. Based on these results, samples that need to be preserved prior to molecular analysis of AM fungi should be kept frozen to minimize the degradation of plant and AM fungal DNA.


Assuntos
Dano ao DNA , DNA Fúngico/genética , DNA de Plantas/genética , Preservação Biológica/métodos , Bromus/microbiologia , DNA Fúngico/metabolismo , DNA de Plantas/metabolismo , Daucus carota/microbiologia , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA