Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 28(7): 1834-1841, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28482148

RESUMO

The use of phage display to identify peptides with an ability to bind and synthesize Eu2O3 nanoparticles is demonstrated in this report. This is the first report of modified phages specifically binding a lanthanide. The peptides exposed on virions revealed very strong binding to Eu2O3 nanoparticles and the ability to catalyze Eu2O3 nanoparticles' formation from Eu(OH)3 and Eu(NO3)3 solutions. The luminescence emission spectrum of Eu3+ ions indicated that these ions existed mostly in sites deviated from the inversion symmetry in crystalline Eu2O3 aggregates and gelatinous Eu(OH)3 precipitate. The ability of phage-displayed peptides to catalyze formation of Eu2O3 nanoparticles provides a useful tool for a low-cost and effective synthesis of lanthanide nanoparticles, which serve as attractive biomedical sensors or fluorescent labels, among their other applications.


Assuntos
Bacteriófagos/metabolismo , Európio/química , Nanopartículas/química , Biblioteca de Peptídeos , Catálise , Európio/metabolismo , Hidróxidos , Nanopartículas/metabolismo , Nitratos , Peptídeos , Vírion/química
2.
Bioconjug Chem ; 27(9): 1999-2006, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27479604

RESUMO

Biological systems, especially bacteriophages and peptides, are an attractive green alternative to other known methods of nanoparticle synthesis. In this work, for the first time, bacteriophages were employed to synthesize a specific peptide, capable of producing nanoparticles (NPs). Derivatives of M13 bacteriophage exposing a ZnO-binding peptide (TMGANLGLKWPV) on either pIII or pVIII phage coat protein were constructed and used as a biotemplate. The exposition of the ZnO-binding peptide, synthesized by phages during their propagation in bacteria, on M13 virions provided a groundwork for growing ZnO nanostructures. Depending on the recombinant phage type used (M13-pIII-ZnO or M13-pVIII-ZnO), well separated ZnO NPs or complex 3D structures of ZnO NPs of ca. 20-40 nm were synthesized at room temperature. The synthesized ZnO nanoparticles served as a luminescent material that emitted light near the short wavelength end of the visible region (at ca. 400 nm). The next very low intensity emission band at 530 nm demonstrated that the ZnO material obtained is characterized by a low concentration of surface defects.


Assuntos
Bacteriófago M13/metabolismo , Substâncias Luminescentes/química , Substâncias Luminescentes/metabolismo , Nanopartículas , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/metabolismo , Vírion/metabolismo
3.
RSC Adv ; 8(20): 11006-11013, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541544

RESUMO

We report on a glass-nanocomposite material consisting of yttrium aluminum garnet (Y3Al5O12, YAG) nanocrystals co-doped with Yb3+, Tm3+ and Ho3+ ions as well as entrapped into a SiO2 xerogel. This 94YAG·5Yb2O3·0.8Tm2O3·0.2Ho2O3@SiO2 (abbr. YAG:YbTmHo@SiO2) nanocomposite material has been prepared by sol-gel procedure. Its structure and morphology has been characterized by means of X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques as well as energy dispersive X-ray (EDX), X-ray photoelectron (XPS) and luminescence spectroscopies. The luminescent glass-nanocomposite exhibited an up-conversion effect under λ exc = 980 nm and emission when excited under 355 nm in steady-state conditions. Then time-resolved luminescence emission was observed, when the sample was excited at 290 and 355 nm by a pulse laser. Average decay times for the SiO2 matrix and for some transitions of the Tm3+ and Ho3+ dopants present in the YAG:YbTmHo@SiO2 material have been evaluated. The luminescent nanocomposite when excited under 290 or 355 nm wavelengths in both conditions emits blue light. However, the nanocomposite is promising as a single-source white-light phosphor owing to its up-conversion luminescence under 980 nm excitation. Such optical features make the studied material an alternative phosphor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA