Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 214, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143559

RESUMO

BACKGROUND: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. RESULTS: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T. In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies. These HMR molecular determinants are putatively involved in arsenic (ars), chromium (chr), cobalt-zinc-cadmium (czc), copper (cop, cup), nickel (nie and nre), and silver and/or copper (sil) resistance. Seven of these HMR clusters were common to symbiotic and non-symbiotic Cupriavidus species, while four clusters were specific to STM 6070, with three of these being associated with insertion sequences. Within the specific STM 6070 HMR clusters, three novel HME-RND systems (nieIC cep nieBA, czcC2B2A2, and hmxB zneAC zneR hmxS) were identified, which constitute new candidate genes for nickel and zinc resistance. CONCLUSIONS: STM 6070 belongs to a new Cupriavidus species, for which we have proposed the name Cupriavidus neocaledonicus sp. nov.. STM6070 harbours a pSym with a high degree of gene conservation to the pSyms of M. pudica-nodulating C. taiwanensis strains, probably as a result of recent horizontal transfer. The presence of specific HMR clusters, associated with transposase genes, suggests that the selection pressure of the New Caledonian ultramafic soils has driven the specific adaptation of STM 6070 to heavy-metal-rich soils via horizontal gene transfer.


Assuntos
Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Metais Pesados/toxicidade , Mimosa/microbiologia , Cádmio/metabolismo , Família Multigênica , Níquel/toxicidade , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/efeitos dos fármacos , Rhizobium/genética , Solo , Microbiologia do Solo , Simbiose , Sintenia/genética , Zinco/toxicidade
2.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617792

RESUMO

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Assuntos
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/classificação , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiologia , Filogenia , Plasmídeos/genética , Simbiose/genética
3.
BMC Genomics ; 19(1): 105, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378510

RESUMO

BACKGROUND: Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. RESULTS: In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. CONCLUSION: The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.


Assuntos
Burkholderia/genética , Cupriavidus/genética , Mimosa/microbiologia , Nodulação/genética , Rhizobium/genética , Burkholderia/metabolismo , Cupriavidus/metabolismo , Perfilação da Expressão Gênica , Genoma Bacteriano , Interações Microbianas , Raízes de Plantas/fisiologia , Rhizobium/metabolismo , Simbiose/genética
4.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793823

RESUMO

Anthyllis vulneraria is a legume associated with nitrogen-fixing rhizobia that together offer an adapted biological material for mine-soil phytostabilization by limiting metal pollution. To find rhizobia associated with Anthyllis at a given site, we evaluated the genetic and phenotypic properties of a collection of 137 rhizobia recovered from soils presenting contrasting metal levels. Zn-Pb mine soils largely contained metal-tolerant rhizobia belonging to Mesorhizobium metallidurans or to another sister metal-tolerant species. All of the metal-tolerant isolates harbored the cadA marker gene (encoding a metal-efflux PIB-type ATPase transporter). In contrast, metal-sensitive strains were taxonomically distinct from metal-tolerant populations and consisted of new Mesorhizobium genospecies. Based on the symbiotic nodA marker, the populations comprise two symbiovar assemblages (potentially related to Anthyllis or Lotus host preferences) according to soil geographic locations but independently of metal content. Multivariate analysis showed that soil Pb and Cd concentrations differentially impacted the rhizobial communities and that a rhizobial community found in one geographically distant site was highly divergent from the others. In conclusion, heavy metal levels in soils drive the taxonomic composition of Anthyllis-associated rhizobial populations according to their metal-tolerance phenotype but not their symbiotic nodA diversity. In addition to heavy metals, local soil physicochemical and topoclimatic conditions also impact the rhizobial beta diversity. Mesorhizobium communities were locally adapted and site specific, and their use is recommended for the success of phytostabilization strategies based on Mesorhizobium-legume vegetation. IMPORTANCE: Phytostabilization of toxic mine spoils limits heavy metal dispersion and environmental pollution by establishing a sustainable plant cover. This eco-friendly method is facilitated by the use of selected and adapted cover crop legumes living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains.


Assuntos
Fabaceae/microbiologia , Mesorhizobium/fisiologia , Metais Pesados/toxicidade , Mineração , Microbiologia do Solo , Poluentes do Solo/toxicidade , Simbiose/efeitos dos fármacos , Aciltransferases/genética , Proteínas de Bactérias/genética , Biodegradação Ambiental , DNA Bacteriano/genética , França , Alemanha , Mesorhizobium/classificação , Mesorhizobium/efeitos dos fármacos , Mesorhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Estações do Ano , Análise de Sequência de DNA
5.
Environ Microbiol ; 16(7): 2099-111, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24131520

RESUMO

Variations in the patterns of diversity of symbionts have been described worldwide on Mimosa pudica, a pan-tropical invasive species that interacts with both α and ß-rhizobia. In this study, we investigated if symbiont competitiveness can explain these variations and the apparent prevalence of ß- over α-rhizobia. We developed an indirect method to measure the proportion of nodulation against a GFP reference strain and tested its reproducibility and efficiency. We estimated the competitiveness of 54 strains belonging to four species of ß-rhizobia and four of α-rhizobia, and the influence of the host genotype on their competitiveness. Our results were compared with biogeographical patterns of symbionts and host varieties. We found: (i) a strong strain effect on competitiveness largely explained by the rhizobial species, with Burkholderia phymatum being the most competitive species, followed by B. tuberum, whereas all other species shared similar and reduced levels of competitiveness; (ii) plant genotype can increase the competitiveness of Cupriavidus taiwanensis. The latter data support the likelihood of the strong adaptation of C. taiwanensis with the M. pudica var. unijuga and help explain its prevalence as a symbiont of this variety over Burkholderia species in some environments, most notably in Taiwan.


Assuntos
Burkholderia/classificação , Cupriavidus/classificação , Mimosa/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Simbiose , Burkholderia/genética , Cupriavidus/genética , Genótipo , Espécies Introduzidas , Mimosa/fisiologia , Dados de Sequência Molecular , Filogeografia , Nodulação/fisiologia , Reprodutibilidade dos Testes , Rhizobium/genética , Taiwan
6.
PLoS One ; 18(4): e0279049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023002

RESUMO

Culturing bacteria from plant material is well known to be conducive to strong bias compared to the actual diversity in the original samples. This bias is related to the bacterial cultivability, chemical composition of the media and culture conditions. Recovery bias is often observed but has never been quantified on different media using an amplicon barcoding approach whereby plant microbiota DNA extractions are compared to DNA extracted from serial dilutions of the same plant tissues grown on bacterial culture media. In this study, we: i) quantified the bacterial culturing diversity bias using 16S amplicon barcode sequencing by comparing a culture-dependent approach (CDA) focused on rice roots on four commonly used bacterial media (10% and 50% TSA, plant-based medium with rice flour, nitrogen free medium NGN and NFb) versus a culture-independent approach (CIA) assessed with DNA extracted directly from root and rhizosphere samples; ii) assessed enriched and missing taxa detected on the different media; iii) used biostatistics functional predictions to highlight metabolic profiles that could potentially be enriched in the CDA and CIA. A comparative analysis of the two approaches revealed that among the 22 phyla present in microbiota of the studied rice root samples, only five were present in the CDA (Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia). The Proteobacteria phylum was the most abundant in all CDA samples, showing high gamma-Proteobacteria enrichment. The diversity of the combined culture media represented about a third of the total microbiota diversity, and its genus diversity and frequency was documented. The functional prediction tool (PICRUSt2) detected nitrogenase enzyme enrichment in bacterial taxa sampled from nitrogen-free media, thus validating its predictive capacity. Further functional predictions also showed that the CDA mostly missed anaerobic, methylotrophic, methanotrophic and photosynthetic bacteria compared to the CIA, thereby generating valuable insight that could enable the design of ad-hoc culture media and conditions to increase the rice-associated microbiota cultivability.


Assuntos
Oryza , Oryza/genética , Viés de Seleção , Nitrogênio , Bactérias , Proteobactérias/genética , Plantas/genética , Meios de Cultura/química , RNA Ribossômico 16S/genética , Microbiologia do Solo
7.
PLoS One ; 18(11): e0287084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032916

RESUMO

Plant-associated bacteria are essential partners in plant health and development. In addition to taking advantage of the rapid advances recently achieved in high-throughput sequencing approaches, studies on plant-microbiome interactions require experiments with culturable bacteria. A study on the rice root microbiome was recently initiated in Burkina Faso. As a follow up, the aim of the present study was to develop a collection of corresponding rice root-associated bacteria covering maximum diversity, to assess the diversity of the obtained isolates based on the culture medium used, and to describe the taxonomy, phenotype and abundance of selected isolates in the rice microbiome. More than 3,000 isolates were obtained using five culture media (TSA, NGN, NFb, PCAT, Baz). The 16S rRNA fragment sequencing of 1,013 selected isolates showed that our working collection covered four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes) and represented 33% of the previously described diversity of the rice root microbiome at the order level. Phenotypic in vitro analysis of the plant growth promoting capacity of the isolates revealed an overall ammonium production and auxin biosynthesis capacity, while siderophore production and phosphate solubilisation were enriched in Burkholderia, Ralstonia, Acinetobacter and Pseudomonas species. Of 45 representative isolates screened for growth promotion on seedlings of two rice cultivars, five showed an ability to improve the growth of both cultivars, while five others were effective on only one cultivar. The best results were obtained with Pseudomonas taiwanensis ABIP 2315 and Azorhizobium caulinodans ABIP 1219, which increased seedling growth by 158% and 47%, respectively. Among the 14 best performing isolates, eight appeared to be abundant in the rice root microbiome dataset from previous study. The findings of this research contribute to the in vitro and in planta PGP capacities description of rice root-associated bacteria and their potential importance for plants by providing, for the first time, insight into their prevalence in the rice root microbiome.


Assuntos
Oryza , Oryza/genética , Burkina Faso , RNA Ribossômico 16S/genética , Bactérias , Proteobactérias/genética , Plântula , Raízes de Plantas
8.
Sci Rep ; 13(1): 10696, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400579

RESUMO

The plant microbiome has recently emerged as a reservoir for the development of sustainable alternatives to chemical fertilizers and pesticides. However, the response of plants to beneficial microbes emerges as a critical issue to understand the molecular basis of plant-microbiota interactions. In this study, we combined root colonization, phenotypic and transcriptomic analyses to unravel the commonalities and specificities of the response of rice to closely related Burkholderia s.l. endophytes. In general, these results indicate that a rice-non-native Burkholderia s.l. strain, Paraburkholderia phytofirmans PsJN, is able to colonize the root endosphere while eliciting a markedly different response compared to rice-native Burkholderia s.l. strains. This demonstrates the variability of plant response to microbes from different hosts of origin. The most striking finding of the investigation was that a much more conserved response to the three endophytes used in this study is elicited in leaves compared to roots. In addition, transcriptional regulation of genes related to secondary metabolism, immunity, and phytohormones appear to be markers of strain-specific responses. Future studies need to investigate whether these findings can be extrapolated to other plant models and beneficial microbes to further advance the potential of microbiome-based solutions for crop production.


Assuntos
Burkholderia , Oryza , Burkholderia/genética , Oryza/genética , Endófitos , Transcriptoma , Raízes de Plantas/genética
9.
Front Microbiol ; 14: 1082107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925474

RESUMO

Integrated virus genomes (prophages) are commonly found in sequenced bacterial genomes but have rarely been described in detail for rhizobial genomes. Cupriavidus taiwanensis STM 6018 is a rhizobial Betaproteobacteria strain that was isolated in 2006 from a root nodule of a Mimosa pudica host in French Guiana, South America. Here we describe features of the genome of STM 6018, focusing on the characterization of two different types of prophages that have been identified in its genome. The draft genome of STM 6018 is 6,553,639 bp, and consists of 80 scaffolds, containing 5,864 protein-coding genes and 61 RNA genes. STM 6018 contains all the nodulation and nitrogen fixation gene clusters common to symbiotic Cupriavidus species; sharing >99.97% bp identity homology to the nod/nif/noeM gene clusters from C. taiwanensis LMG19424T and "Cupriavidus neocalidonicus" STM 6070. The STM 6018 genome contains the genomes of two prophages: one complete Mu-like capsular phage and one filamentous phage, which integrates into a putative dif site. This is the first characterization of a filamentous phage found within the genome of a rhizobial strain. Further examination of sequenced rhizobial genomes identified filamentous prophage sequences in several Beta-rhizobial strains but not in any Alphaproteobacterial rhizobia.

10.
New Phytol ; 195(2): 437-449, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22548481

RESUMO

• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N2-fixation of the bacterial partner were investigated. • Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status. • The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N2-fixing partners to compensate the local N limitation. This response is mediated by a stimulation of nodule development (number and size) and involves a systemic signaling mechanism related to the plant N demand. In roots co-infected with poorly and highly efficient strains, partner choice for nodule formation was not modulated by the plant N status. However, the plant N demand induced preferential expansion of nodules formed with the most efficient partners when the symbiotic organs were functional. The response of nodule expansion was associated with the stimulation of symbiotic plant cell multiplication and of bacteroid differentiation. • A general model where local and systemic N signaling mechanisms modulate interactions between Medicago truncatula and its Sinorhizobium partners is proposed.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Nitrogênio/metabolismo , Transdução de Sinais , Sinorhizobium/fisiologia , Simbiose/fisiologia , Biomassa , Medicago truncatula/efeitos dos fármacos , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sinorhizobium/efeitos dos fármacos , Simbiose/efeitos dos fármacos
11.
FEMS Microbiol Ecol ; 98(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35867879

RESUMO

Due to their potential applications for food safety, there is a growing interest in rice root-associated microbial communities, but some systems remain understudied. Here, we compare the assemblage of root-associated microbiota in rice sampled in 19 small farmer's fields from irrigated and rainfed lowlands in Burkina Faso, using an amplicon metabarcoding approach of the 16S rRNA gene (prokaryotes, three plant samples per field) and ITS (fungi, one sample per field). In addition to the expected structure by root compartments (root vs rhizosphere) and geographical zones, we showed that the rice production system is a major driver of microbiome structure. In irrigated systems, we found a higher diversity of prokaryotic communities from the rhizosphere and more complex co-occurrence networks, compared to rainfed lowlands, while fungal communities exhibited an opposite pattern (higher richness in rainfed lowlands). Core taxa were different between the two systems, and indicator species were identified: mostly within Bacillaceae in rainfed lowlands, and within Burkholderiaceae and Moraxellaceae in irrigated areas. Finally, a higher abundance in rainfed lowlands was found for mycorrhizal fungi (both compartments) and rhizobia (rhizosphere only). Our results highlight deep microbiome differences induced by contrasted rice production systems that should consequently be considered for microbial engineering applications.


Assuntos
Microbiota , Oryza , Burkina Faso , Fazendeiros , Fungos/genética , Humanos , Oryza/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
12.
Folia Biol (Krakow) ; 59(1-2): 25-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21614963

RESUMO

The aim of this study was to determine the influence of age and ingested food (colostrum and mature milk) on the concentrations of selected blood biochemical components connected with nitrogen and mineral metabolism in dairy calves during their first week of life. The experiment was carried out on 13 Polish Black and White breed dairy calves. The animals were fed colostrum within the first 3 days of postnatal life and thereafter the mature milk of their dams until the end ofthe experiment (7 days). The obtained results showed that intensive catabolic and anabolic changes in nitrogen occur in the first week of life. These changes were particularly intense during the first 24-48 hours of life and may reflect dynamic tissue remodelling. The results of this experiment also show that healthy calves efficiently regulate water and electrolyte homeostasis.


Assuntos
Envelhecimento/sangue , Indústria de Laticínios , Animais , Animais Recém-Nascidos , Bovinos
13.
Front Plant Sci ; 10: 1141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608089

RESUMO

In the context of plant-pathogen and plant-mutualist interactions, the underlying molecular bases associated with host colonization have been extensively studied. However, it is not the case for non-mutualistic beneficial interactions or associative symbiosis with plants. Particularly, little is known about the transcriptional regulations associated with the immune tolerance of plants towards beneficial microbes. In this context, the study of the Burkholderia rice model is very promising to describe the molecular mechanisms involved in associative symbiosis. Indeed, several species of the Burkholderia sensu lato (s.l.) genus can colonize rice tissues and have beneficial effects; particularly, two species have been thoroughly studied: Burkholderia vietnamiensis and Paraburkholderia kururiensis. This study aims to compare the interaction of these species with rice and especially to identify common or specific plant responses. Therefore, we analyzed root colonization of the rice cultivar Nipponbare using DsRed-tagged bacterial strains and produced the transcriptomes of both roots and leaves 7 days after root inoculation. This led us to the identification of a co-expression jasmonic acid (JA)-related network exhibiting opposite regulation in response to the two strains in the leaves of inoculated plants. We then monitored by quantitative polymerase chain reaction (qPCR) the expression of JA-related genes during time course colonization by each strain. Our results reveal a temporal shift in this JA systemic response, which can be related to different colonization strategies of both strains.

14.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247638

RESUMO

Acacia spirorbis subsp. spirorbis Labill. is a widespread tree legume endemic to New Caledonia that grows in ultramafic (UF) and volcano-sedimentary (VS) soils. The aim of this study was to assess the symbiotic promiscuity of A. spirorbis with nodulating and nitrogen-fixing rhizobia in harsh edaphic conditions. Forty bacterial strains were isolated from root nodules and characterized through (i) multilocus sequence analyses, (ii) symbiotic efficiency and (iii) tolerance to metals. Notably, 32.5% of the rhizobia belonged to the Paraburkholderia genus and were only found in UF soils. The remaining 67.5%, isolated from both UF and VS soils, belonged to the Bradyrhizobium genus. Strains of the Paraburkholderia genus showed significantly higher nitrogen-fixing capacities than those of Bradyrhizobium genus. Strains of the two genera isolated from UF soils showed high metal tolerance and the respective genes occurred in 50% of strains. This is the first report of both alpha- and beta-rhizobia strains associated to an Acacia species adapted to UF and VS soils. Our findings suggest that A. spirorbis is an adaptive plant that establishes symbioses with whatever rhizobia is present in the soil, thus enabling the colonization of contrasted ecosystems.


Assuntos
Acacia/microbiologia , Bradyrhizobium/metabolismo , Burkholderiaceae/metabolismo , Metais/metabolismo , Poluentes do Solo/metabolismo , Adaptação Fisiológica , Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Nova Caledônia , Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo , Simbiose
15.
Stand Genomic Sci ; 12: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116041

RESUMO

Rhizobium mesoamericanum STM6155 (INSCD = ATYY01000000) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as an effective nitrogen fixing microsymbiont of the legume Mimosa pudica L.. STM6155 was isolated in 2009 from a nodule of the trap host M. pudica grown in nickel-rich soil collected near Mont Dore, New Caledonia. R. mesoamericanum STM6155 was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) genome sequencing project. Here we describe the symbiotic properties of R. mesoamericanum STM6155, together with its genome sequence information and annotation. The 6,927,906 bp high-quality draft genome is arranged into 147 scaffolds of 152 contigs containing 6855 protein-coding genes and 71 RNA-only encoding genes. Strain STM6155 forms an ANI clique (ID 2435) with the sequenced R. mesoamericanum strain STM3625, and the nodulation genes are highly conserved in these strains and the type strain of Rhizobium grahamii CCGE501T. Within the STM6155 genome, we have identified a chr chromate efflux gene cluster of six genes arranged into two putative operons and we postulate that this cluster is important for the survival of STM6155 in ultramafic soils containing high concentrations of chromate.

16.
Leuk Lymphoma ; 58(4): 889-897, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27561449

RESUMO

Monosomal karyotype (MK) and complex karyotype (CK) are poor prognostic factors in acute myeloid leukemia (AML). A comprehensive analysis of cytogenetic and clinical factors influencing an outcome of AML-CK+ was performed. The impact of cladribine containing induction on treatment results was also evaluated. We analyzed 125 patients with AML-CK+ treated within PALG protocols. MK was found in 75 (60%) individuals. The overall complete remission (CR) rate of 66 intensively treated patients was 62% vs. 28% in CK+ MK- and CK+ MK+ group (p = .01). No difference in CR rate was observed between DA and DAC arms. The overall survival (OS) in intensively treated patients was negatively influenced by MK, karyotype complexity (≥5 abnormalities), and WBC >20 G/L in multivariate analysis. The addition of cladribine to DA regimen improved OS only in MK- but not in MK+ group. In conclusion, concomitance of MK with ≥5 chromosomal abnormalities is associated with dismal treatment outcome in AMK-CK+.


Assuntos
Aberrações Cromossômicas , Cariótipo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Monossomia , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Terapia Combinada , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Polônia , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida , Transplante Homólogo , Resultado do Tratamento , Adulto Jovem
17.
PLoS One ; 10(2): e0117667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658650

RESUMO

Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.


Assuntos
Acacia/microbiologia , Variação Genética , Genoma Bacteriano/genética , Mesorhizobium/genética , Acacia/classificação , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Geografia , Concentração de Íons de Hidrogênio , Mesorhizobium/classificação , Dados de Sequência Molecular , Tipagem de Sequências Multilocus/métodos , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Tolerância ao Sal/genética , Senegal , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Especificidade da Espécie , Simbiose
18.
Clin Infect Dis ; 36(1): 112-5, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12491211

RESUMO

Serologic tests for the detection of Salmonella serotype Enteritidis in children may become supplementary to stool culture examination. A total of 190 children were examined with a new 1-step, 2-minute test (TUBEX) that detects anti-Salmonella immunoglobulin M antibodies, which was found to be 92.6% sensitive and 94.8% specific (P<.0001).


Assuntos
Gastroenteropatias/diagnóstico , Infecções por Salmonella/diagnóstico , Salmonella/classificação , Sorotipagem/métodos , Criança , Pré-Escolar , Gastroenteropatias/microbiologia , Humanos , Imunoglobulina M/análise , Kit de Reagentes para Diagnóstico , Infecções por Salmonella/microbiologia , Testes Sorológicos
19.
Res Microbiol ; 154(1): 25-8, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12576155

RESUMO

The basidiomycete C30 was considered as an isolate of a population of Marasmius quercophilus collected on evergreen oak litter from the Mediterranean forest. Recent phenotypic studies have clearly shown that it differs from newly characterized M. quercophilus isolates. Subsequent analysis of laccase genes revealed that C30 sequences are similar to laccase encoding sequences from organisms belonging to the polyporoid clade. Comparison of sequences of the C30 ITS regions, including 5.8S rDNA, with those found in databanks confirmed that C30 is not a Marasmius. Finally, 25S rDNA analysis revealed that C30 is closely related to the Coriolaceae and, in particular, to Trametes trogii.


Assuntos
Basidiomycota/classificação , DNA Ribossômico/química , Análise de Sequência de DNA , Basidiomycota/genética , Filogenia
20.
Stand Genomic Sci ; 9(3): 763-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197461

RESUMO

Burkholderia phymatum is a soil bacterium able to develop a nitrogen-fixing symbiosis with species of the legume genus Mimosa, and is frequently found associated specifically with Mimosa pudica. The type strain of the species, STM 815(T), was isolated from a root nodule in French Guiana in 2000. The strain is an aerobic, motile, non-spore forming, Gram-negative rod, and is a highly competitive strain for nodulation compared to other Mimosa symbionts, as it also nodulates a broad range of other legume genera and species. The 8,676,562 bp genome is composed of two chromosomes (3,479,187 and 2,697,374 bp), a megaplasmid (1,904,893 bp) and a plasmid hosting the symbiotic functions (595,108 bp).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA