Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
J Chem Phys ; 158(1): 014308, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610981

RESUMO

Trapped ultracold alkali-metal atoms can be used to measure pressure in the ultra-high-vacuum and XHV pressure regimes, those with p < 10-6 Pa. This application for ultracold atoms relies on precise knowledge of collision rate coefficients of alkali-metal atoms with residual room-temperature atoms and molecules in the ambient vacuum or with deliberately introduced gasses. Here, we determine combined elastic and inelastic rate coefficients as well as glancing-angle rate coefficients for ultracold 7Li and 87Rb with room-temperature noble gas atoms as well as H2 and 14N2 molecules. Glancing collisions are those processes where only little momentum is transferred to the alkali-metal atom and this atom is not ejected from its trap. Rate coefficients are found by performing quantum close-coupling scattering calculations using ab initio ground-state electronic Born-Oppenheimer potential energy surfaces. The potentials for Li and Rb with noble gas atoms and also for Rb(2S)-H2(XΣg +) and Rb(2S)-N2(X1Σg +) systems are based on the non-relativistic spin-restricted coupled-cluster method with single, double, and noniterative triple excitations [RCCSD(T)]. For Li(2S)-N2(X1Σg +), the potential is computed at the explicitly correlated spin-restricted RCCSD(T)-F12 level. For Rb, Kr, and Xe atoms, scalar relativistic corrections to the core electrons have been included, while second-order spin-orbit corrections from the valence electrons have been estimated. Data for Li-H2 and Li-He were taken from the existing literature. We estimate standard uncertainties of the rate coefficients by comparing rate coefficients calculated using potentials found with electronic basis sets of increasing size, including estimates of relativistic spin-orbit corrections and the uncertainty of the van der Waals coefficients. The relative uncertainties of rate coefficients are 1%-2% with the exception of 7Li or 87Rb colliding with 20Ne. Those have relative uncertainties of 9% and 8%, respectively. We also show that a commonly used semiclassical approximation for the total elastic rate coefficient agrees with the quantum calculations to 10% with the exception of 7Li and 87Rb collisions with H2, where the semiclassical value underestimates the quantum value by 20%.

2.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37909452

RESUMO

In this work the H2O-HCN complex is quantitatively characterized in two ways. First, we report a new rigid-monomer 5D intermolecular potential energy surface (PES) for this complex, calculated using the symmetry-adapted perturbation theory based on density functional theory method. The PES is based on 2833 ab initio points computed employing the aug-cc-pVQZ basis set, utilizing the autoPES code, which provides a site-site analytical fit with the long-range region given by perturbation theory. Next, we present the results of the quantum 5D calculations of the fully coupled intermolecular rovibrational states of the H2O-HCN complex for the total angular momentum J values of 0, 1, and 2, performed on the new PES. These calculations rely on the quantum bound-state methodology developed by us recently and applied to a variety of noncovalently bound binary molecular complexes. The vibrationally averaged ground-state geometry of H2O-HCN determined from the quantum 5D calculations agrees very well with that from the microwave spectroscopic measurements. In addition, the computed ground-state rotational transition frequencies, as well as the B and C rotational constants calculated for the ground state of the complex, are in excellent agreement with the experimental values. The assignment of the calculated intermolecular vibrational states of the H2O-HCN complex is surprisingly challenging. It turns out that only the excitations of the intermolecular stretch mode can be assigned with confidence. The coupling among the angular degrees of freedom (DOFs) of the complex is unusually strong, and as a result most of the excited intermolecular states are unassigned. On the other hand, the coupling of the radial, intermolecular stretch mode and the angular DOFs is weak, allowing straightforward assignment of the excitation of the former.

3.
J Am Chem Soc ; 144(29): 13234-13241, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35830302

RESUMO

Aryl diazonium reactions are widely used to covalently modify graphitic electrodes and low-dimensional carbon materials, including the recent creation of organic color centers (OCCs) on single-wall carbon nanotube semiconductors. However, due to the experimental difficulties in resolving small functional groups over extensive carbon lattices, a basic question until now remains unanswered: what group, if any, is pairing with the aryl sp3 defect when breaking a C═C bond on the sp2 carbon lattice? Here, we show that water plays an unexpected role in completing the diazonium reaction with carbon nanotubes involving chlorosulfonic acid, acting as a nucleophilic agent that contributes -OH as the pairing group. By simply replacing water with other nucleophilic solvents, we find it is possible to create OCCs that feature an entirely new series of pairing groups, including -OCH3, -OC2H5, -OC3H7, -i-OC3H7, and -NH2, which allows us to systematically tailor the defect pairs and the optical properties of the resulting color centers. Enabled by these pairing groups, we further achieved the synthesis of OCCs with sterically bulky pairs that exhibit high purity defect photoluminescence effectively covering both the second near-infrared window and the telecom wavelengths. Our studies further suggest that these diazonium reactions proceed through the formation of carbocations in chlorosulfonic acid, rather than a radical mechanism that typically occurs in aqueous solutions. These findings uncover the unknown half of the sp3 defect pairs and provide a synthetic approach to control these defect color centers for quantum information, imaging, and sensing.

4.
Phys Rev Lett ; 127(10): 103402, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533330

RESUMO

We demonstrate that it is possible to efficiently control ultracold chemical reactions of alkali-metal atoms colliding with open-shell alkali-metal dimers in their metastable triplet states by choosing the internal hyperfine and rovibrational states of the reactants as well as by inducing magnetic Feshbach resonances with an external magnetic field. We base these conclusions on coupled-channel statistical calculations that include the effects of hyperfine contact and magnetic-field-induced Zeeman interactions on ultracold chemical reactions of hyperfine-resolved ground-state Na and the triplet NaLi(a^{3}Σ^{+}) producing singlet Na_{2}(^{1}Σ_{g}^{+}) and a Li atom. We find that the reaction rates are sensitive to the initial hyperfine states of the reactants. The chemical reaction of fully spin-polarized, high-spin states of rotationless NaLi(a^{3}Σ^{+},v=0,N=0) molecules with fully spin-polarized Na is suppressed by a factor of 10-100 compared to that of unpolarized reactants. We interpret these findings within the adiabatic state model, which treats the reaction as a sequence of nonadiabatic transitions between the initial nonreactive high-spin state and the final low-spin states of the reaction complex. In addition, we show that magnetic Feshbach resonances can similarly change reaction rate coefficients by several orders of magnitude. Some of these resonances are due to resonant trimer bound states dissociating to the N=2 rotational state of NaLi(a^{3}Σ^{+},v=0) and would thus exist in systems without hyperfine interactions.

5.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500713

RESUMO

The surface properties of three commercial ionomer glass powders, i.e., Fuji IX, Kavitan Plus and Chemadent G-J-W were studied. Samples were analyzed by X-ray fluorescence spectroscopy (XRF), and the density was determined by gas pycnometry. Morphology was studied using scanning electron microscopy (SEM) and laser diffraction (LD) technique, whereas low-temperature nitrogen sorption measurements determined textural parameters like specific surface area and pore volume. Thermal transformations in the materials studied were evaluated by thermogravimetric analysis (TGA), which was carried out in an inert atmosphere between 30 °C and 900 °C. XRF showed that Fuji IX and Kavitan Plus powders were strontium-based, whereas Chemadent G-J-W powder was calcium-based. Powders all had a wide range of particle sizes under SEM and LD measurements. Specific surface areas and pore volumes were in the range 1.42-2.73 m2/g and 0.0029 to 0.0083 cm3/g, respectively, whereas densities were in the range 2.6428-2.8362 g/cm3. Thermogravimetric analysis showed that the glass powders lost mass in a series of steps, with Fuji IX powder showing the highest number, some of which are attributed to the dehydration and decomposition of the polyacrylic acid present in this powder. Mass losses were more straightforward for the other two glasses. All three powders showed distinct losses at around 780 °C and 835 °C, suggesting that similar dehydration steps occur in all these glasses. Other steps, which differed between glass powders, are attributed to variations in states of water-binding on their surfaces.


Assuntos
Resinas Acrílicas/química , Teste de Materiais/métodos , Dióxido de Silício/química , Cimentos de Ionômeros de Vidro/química , Propriedades de Superfície , Termogravimetria
6.
Phys Chem Chem Phys ; 22(19): 10870-10881, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32367082

RESUMO

We present experimental evidence of charge exchange between laser-cooled potassium 39K atoms and calcium 40Ca+ ions in a hybrid atom-ion trap and give quantitative theoretical explanations for the observations. The 39K atoms and 40Ca+ ions are held in a magneto-optical (MOT) and a linear Paul trap, respectively. Fluorescence detection and high resolution time of flight mass spectra for both species are used to determine the remaining number of 40Ca+ ions, the increasing number of 39K+ ions, and 39K number density as functions of time. Simultaneous trap operation is guaranteed by alternating periods of MOT and 40Ca+ cooling lights, thus avoiding direct ionization of 39K by the 40Ca+ cooling light. We show that the K-Ca+ charge-exchange rate coefficient increases linearly from zero with 39K number density and the fraction of 40Ca+ ions in the 4p 2P1/2 electronically-excited state. Combined with our theoretical analysis, we conclude that these data can only be explained by a process that starts with a potassium atom in its electronic ground state and a calcium ion in its excited 4p 2P1/2 state producing ground-state 39K+ ions and metastable, neutral Ca (3d4p 3P1) atoms, releasing only 150 cm-1 equivalent relative kinetic energy. Charge-exchange between either ground- or excited-state 39K and ground-state 40Ca+ is negligibly small as no energetically-favorable product states are available. Our experimental and theoretical rate coefficients are in agreement given the uncertainty budgets.

7.
J Chem Phys ; 150(6): 064704, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769969

RESUMO

This paper reports the results of analysis of the electrical double layer (EDL) phenomenon in molten salts to provide information on the influence of short range interaction type on the shape of charge distribution and the effect of the charge distribution shape on capacitance values. A new method of analysis is proposed, which allows a quantitative discussion. It is assumed that EDL can be modelled as a number of capacitor plates connected in series. This paper reports the application of the proposed method in quantitative analysis of the molten salt capacitance data obtained for different short range potentials. The data to be analysed were obtained from the Monte Carlo simulations of the symmetrical molten salt electrolyte for the following short range interaction potentials: hard spheres, Lennard-Jones repulsions, and full Lennard-Jones. The new analysis method gives a more detailed understanding of EDL in molten salts and can become an inspiration for new researches in this field.

8.
J Chem Phys ; 150(18): 184703, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091935

RESUMO

Results of Monte Carlo simulations of the electrode-molten salt interface are reported. The system was modeled by soft ions in contact with a soft wall using the Lennard-Jones potential restricted to the repulsion part. The soft wall was formed of C (graphite), Hg, and Pb atoms. Calculations were carried out for the parameter values which would permit making comparison with the real system. The paper presents information on physicochemical properties of the interfacial region, such as the ion singlet distribution functions, the mean electrostatic potential as a function of the distance from the electrode surface, and differential capacitance results as a function of the electrode charges. The differential capacitance curves have a flat and distorted bell shape which vary depending on the kind of the electrode material. The differential capacitance results are discussed and compared with the data obtained from ionic liquid simulations, density functional theory, and mean field calculations.

9.
J Chem Phys ; 150(14): 144303, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30981276

RESUMO

The near-equilibrium potential energy surface (PES) of the ã 3B1 state of SO2 is developed from explicitly correlated spin-unrestricted coupled cluster calculations with single, double, and perturbative triple excitations with an augmented triple-zeta correlation-consistent basis set. The lowest-lying ro-vibrational energy levels of several sulfur isotopologues have been determined using this PES. It is shown that the new ab initio PES provides a much better description of the low-lying vibrational states than a previous PES determined at the multi-reference configuration interaction level. In particular, the theory-experiment agreement for the three lowest-lying vibrational transitions is within 1-3 cm-1.

10.
J Chem Phys ; 149(20): 204309, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501249

RESUMO

The chemistry of fluorine in the interstellar medium is particularly simple, with only a few key species and important reactions. Of the latter, the rate of the reaction of C+ ions with HF is not well established but is one of the key reactions that sets the relative abundance of HF and the CF+ ion, the two fluorine-bearing species that have been observed in interstellar clouds. The C+ + HF → CF+ + H reaction proceeds through a deeply bound HCF+ well. In this work, statistical methods, namely, the statistical adiabatic channel method originally developed by Quack and Troe and the quantum statistical method of Manolopoulos and co-workers, are applied to compute the total cross section as a function of energy for this reaction. This reaction proceeds on the ground 12 A' potential energy surface (PES), and there are also two non-reactive PES's, 12 A″ and 22 A', correlating with the C+(2 P 1/2,3/2) + HF reactants. Two sets of scattering calculations were carried out, namely, a single-surface calculation on the 12 A' PES and the one in which all three PES's and the spin-orbit splitting of C+ are included in the description of the entrance channel. In the latter, reactivity of the spin-orbit excited 2 P 3/2 level can be computed, and not just assumed to be zero, as in the single-state adiabatic approximation.

11.
J Chem Phys ; 148(12): 124311, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604824

RESUMO

The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

12.
Phys Rev Lett ; 118(21): 213401, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598640

RESUMO

We have used laser ablation and helium buffer-gas cooling to produce titanium-helium van der Waals molecules at cryogenic temperatures. The molecules were detected through laser-induced fluorescence spectroscopy. Ground-state Ti(a^{3}F_{2})-He binding energies were determined for the ground and first rotationally excited states from studying equilibrium thermodynamic properties, and found to agree well with theoretical calculations based on newly calculated ab initio Ti-He interaction potentials, opening up novel possibilities for studying the formation, dynamics, and nonuniversal chemistry of van der Waals clusters at low temperatures.

13.
Phys Chem Chem Phys ; 20(1): 262-275, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29204593

RESUMO

The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

14.
J Phys Chem A ; 121(5): 1012-1021, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068096

RESUMO

The high resolution spectroscopy of the SO2 molecule is of great topical interest, in a wide variety of contexts ranging from origins of higher life, to astrophysics of the interstellar medium, to environmental chemistry. In particular, the C̃1B2 ← X̃1A1 UV photoabsorption spectrum has received considerable attention. This spectrum exhibits a highly regular progression of ∼20 or so strong peaks, spaced roughly 350 cm-1 apart, which is comparable to the C̃1B2 bending vibrational frequency. Accordingly, they have for decades been largely attributed to the (1, v2', 2) ← (0, 0, 0) bend progression. Using a highly accurate new ab initio potential energy surface (PES) for the C̃1B2 state, we compute vibrational energy levels and wave functions, and compare with a photoabsorption calculation obtained using the same PES and corresponding C̃1B2 ← X̃1A1 transition dipole surface (TDS). We find that the above putative assignment is incorrect, contradicting even general qualitative trends-thus necessitating a very different dynamical picture for this highly unusual molecule.

15.
J Phys Chem A ; 121(26): 4930-4938, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28613867

RESUMO

The fragmentation dynamics of predissociative SO2(C̃1B2) is investigated on an accurate adiabatic potential energy surface (PES) determined from high level ab initio data. This singlet PES features non-C2v equilibrium geometries for SO2, which are separated from the SO(X̃3Σ-) + O(3P) dissociation limit by a barrier resulting from a conical intersection with a repulsive singlet state. The ro-vibrational state distribution of the SO fragment is determined quantum mechanically for many predissociative states of several sulfur isotopomers of SO2. Significant rotational and vibrational excitations are found in the SO fragment. It is shown that these fragment internal state distributions are strongly dependent on the predissociative vibronic states, and the excitation typically increases with the photon energy.

16.
J Chem Phys ; 146(11): 114301, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28330347

RESUMO

We determine from first principles two sets of four-dimensional diabatic potential energy surfaces (PES's) for the interaction of NO(X2Π) with H2, under the assumption of fixed NO and H2 bond distances. The first set of PES's was computed with the explicitly correlated multi-reference configuration interaction method [MRCISD-F12 + Q(Davidson)], and the second set with an explicitly correlated, coupled-cluster method [RCCSD(T)-F12a] with the geometry scan limited to geometries possessing a plane of symmetry. The calculated PES's are then fit to an analytical form suitable for bound state and scattering calculations. The RCCSD(T)-F12a dissociation energies (D0) of the NO-para-H2(ortho-D2) and the NO-ortho-H2(para-D2) complexes are computed to be 22.7 (31.7) and 23.9 (29.2) cm-1, respectively. The values calculated with the MRCISD-F12 + Q PES's are 21.6 (31.1) and 23.3 (28.4) cm-1, respectively.

17.
J Chem Phys ; 146(15): 154305, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28433016

RESUMO

The low-energy wing of the C∼B21←X∼1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X∼1A1) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

18.
J Phys Chem A ; 120(16): 2504-13, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27046417

RESUMO

The gas-phase quenching reaction C((1)D) + N2 → C((3)P) + N2 has been investigated experimentally over the temperature range 50-296 K using a supersonic flow reactor. C((1)D) atoms were produced in situ by the pulsed multiphoton dissociation of CBr4 precursor molecules. Rate constants for this process were measured using a chemical tracer method whereby the C((1)D) + H2 → CH + H reaction was employed to follow C((1)D) decays by monitoring vacuum ultraviolet laser-induced fluorescence of the atomic hydrogen product at 121.567 nm. The deactivation rates are seen to increase at lower temperature, indicating the likely influence of the CNN intermediate complex lifetime on intersystem crossing for this system. We also performed electronic structure calculations of relevant C((3)P)-N2 and C((1)D)-N2 potential energy curves as well as triplet-singlet spin-orbit coupling terms using the explicitly correlated internally contracted multireference configuration interaction method (ic-MRCI-F12). The calculations were performed for the collinear and perpendicular approach of the C atom toward the N2 molecule, which allowed us to construct the approximate spherical (isotropic) potential model of C-N2(j = 0). The computed reduced dimensional potentials were used in quantum close coupling scattering calculations of the electronic quenching cross sections and rate constants. While the calculated potential energy curves form the basis for a good qualitative description of the reaction, the calculated rate constants are significantly smaller than the measured ones, and fail to reproduce the temperature dependence of the experimental results. Several possible reasons are provided to explain the origin of these differences.

19.
J Chem Phys ; 145(21): 214305, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799340

RESUMO

We present a theoretical study of the Zeeman relaxation of the magnetically trappable lowest field seeking state of CrH(X6Σ+) in collisions with 3He. A two dimensional potential energy surface (PES) was calculated with the partially spin-restricted coupled cluster singles, doubles, and non-iterative triples [RCCSD(T)] method. The global minimum was found for the collinear He⋯Cr-H geometry with the well depth of 1143.84 cm-1 at Re = 4.15 a0. Since the RCCSD(T) calculations revealed a multireference character in the region of the global minimum, we performed additional calculations with the internally contracted multireference configuration interaction with the Davidson correction (ic-MRCISD+Q) method. The resulting PES is similar to the RCCSD(T) PES except for the region of the global minimum, where the well depth is 3032 cm-1 at Re = 3.8 a0. An insight into the character of the complex was gained by means of symmetry-adapted perturbation theory based on unrestricted Kohn-Sham description of the monomers. Close coupling calculations of the Zeeman relaxation show that although the ΔMJ=MJ'-MJ = -1 and -2 transitions are the dominant contributions to the collisional Zeeman relaxation, ΔMJ<-2 transitions cannot be neglected due to the large value of CrH spin-spin constant. The calculated elastic to inelastic cross section ratio is 1600 for the RCCSD(T) PES and 500 for the MRCISD+Q PES, while the estimate from the buffer-gas cooling and magnetic trapping experiment is 9000.

20.
J Chem Phys ; 144(20): 204303, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250302

RESUMO

We used the explicitly correlated variant of the coupled clusters method with single, double, and noniterative triple excitations [CCSD(T)-F12] to compute two-dimensional potential energy surfaces of van der Waals complexes formed by rare gas atoms (Rg) and NO(+)(X(1)Σ(+)) cations. We used the correlation-consistent, triple-zeta (cc-pVTZ-F12) atomic basis sets, and for Kr and Xe rare gases, we employed corresponding pseudopotential cc-pVTZ-PP-F12 atomic basis sets. These basis sets were additionally augmented with mid-bond functions. The complexes are all of skewed T-shape type with Rg atom being closer to the N-side. Using analytical representation of the potentials, we have estimated zero-point energy corrected dissociation energies from anharmonic calculations with BOUND program and also from the harmonic approximation. The binding energies increase with the polarization of the Rg atom in series from He to Xe and are 196 cm(-1), 360 cm(-1), 1024 cm(-1), 1434 cm(-1), and 2141 cm(-1), respectively. Their corresponding dissociation energies are 132 cm(-1), 300 cm(-1), 927 cm(-1), 1320 cm(-1), and 1994 cm(-1) for the complexes with He to Xe, respectively. We find good agreement with previous theoretical and experimental results. The harmonic vibrational frequencies were calculated for the bending and stretching modes of the Rg-NO(+) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA