Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(24): e2311839, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155348

RESUMO

Solid-polymer electrolytes comprised of polypropylene carbonate (PPC) and varied sodium bis(fluorosulfonyl)imide (NaFSI) salt concentrations are investigated for implementation as a conductive solid polymer electrolyte into solid-state cathode composites utilizing a sodium-layered oxide active material. The ionic conductivity generally increases with NaFSI salt content, reaching ≈1 mS cm-1 at 80 °C at the highest salt concentration (PPC:NaFSI = 0.5:1). Through an all-in-one slurry casting method, Na2/3Ni1/3Mn2/3O2 cathode composites are fabricated in which the dispersed PPC electrolyte acts as the primary binder. Enabled by a bilayer polymer electrolyte system, cycling performance with the PPC cathode electrolyte is optimized with respect to salt concentration and anode material. The best cyclability is achieved with a moderate salt concentration electrolyte (PPC:NaFSI = 5:1), showcasing an initial capacity of 83 mA h g-1 with a remarkable 80% capacity retention after 150 cycles at C/5 rate and 60 °C. The superior performance of the lower salt concentration electrolyte is attributed to better electrochemical stability, as confirmed by linear sweep voltammetry and online electrochemical mass spectrometry measurements. These results underscore the potential of carbonate-based polymer electrolytes and the importance of balancing electrolyte conductivity and stability in cell design.

2.
Inorg Chem ; 63(20): 9129-9144, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38709976

RESUMO

In the development of sodium all-solid-state batteries (ASSBs), research efforts have focused on synthesizing highly conducting and electrochemically stable solid-state electrolytes. Glassy solid electrolytes (GSEs) have been considered very promising due to their tunable chemistry and resistance to dendrite growth. For these reasons, we focus here on the atomic-level structures and properties of GSEs in the compositional series (0.6-0.08y)Na2S + (0.4 + 0.08y)[(1 - y)[(1 - x)SiS2 + xPS5/2] + yNaPO3] (NaPSiSO). The mechanical moduli, glass transition temperatures, and temperature-dependent conductivity were determined and related to their short-range order structures that were determined using Raman, Fourier transform infrared, and 31P and 29Si magic angle spinning nuclear magnetic resonance spectroscopies. In addition, the conductivity activation energies were modeled using the Christensen-Martin-Anderson-Stuart model. These GSEs appear to be highly crystallization-resistant in the supercooled liquid region where no measurable crystallization below 450 °C could be observed in differential scanning calorimetry studies. Additionally, these GSEs were found to be highly conducting, with conductivities on the order of 10-5 (Ω cm)-1 at room temperature, and processable in the supercooled state without crystallization. For all these reasons, these NaPSiSO GSEs are considered to be highly competitive and easily processable candidate GSEs for enabling sodium ASSBs.

3.
J Phys Chem A ; 128(18): 3635-3645, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38662914

RESUMO

High-field magic angle spinning (MAS) dynamic nuclear polarization (DNP) is becoming a common technique for improving the sensitivity of solid-state nuclear magnetic resonance (SSNMR) by the hyperpolarization of nuclear spins. Recently, we have shown that gamma irradiation is capable of creating long-lived free radicals that are amenable to MAS DNP in quartz and a variety of organic solids. Here, we demonstrate that ball milling is able to generate millimolar concentrations of stable radical species in diverse materials such as polystyrene, cellulose, borosilicate glass, and fused quartz. High-field electron paramagnetic resonance (EPR) was used to obtain further insight into the nature of the radicals formed in ball milled quartz and borosilicate glass. We further show that radicals generated in quartz by ball milling can be used for solid-effect DNP. We obtained 29Si DNP enhancements of approximately 114 and 33 at 110 K and room temperature, respectively, from a sample of ball milled quartz.

4.
Angew Chem Int Ed Engl ; 63(25): e202403865, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626293

RESUMO

The O-type layered nickel oxides suffer from undesired cooperative Jahn-Teller distortion stemming from Ni3+ ions and undergo multiple biphasic structural transformations during the insertion/extraction of large Na+ ions, posing a significant challenge to stabilize the structural integrity. We present here a systematic investigation of the impact of substituting 5 % divalent (Mg2+) or trivalent (Al3+ or Co3+) ions for Ni3+ to alleviate Na+ion ordering and perturb the Jahn-Teller effect to enhance structural stability. We gauge a fundamental understanding of the Mg-O and Na-O or Mg-O-Na bonding interactions, noting that the ionicity of the Mg-O bond deshields the electronic cloud of oxygen from Na+ ions. Furthermore, calculations of the Van Vleck distortion modes reveal a relaxation of NiO6 octahedra from Jahn-Teller distortion and a reduced electron density at the interlayer with Mg2+ substitution. Long-range (operando X-ray diffraction) and short-range (magic angle spinning nuclear magnetic resonance) structural analyses provide insights into reduced ordering, allowing a stable continuous solid solution. Overall, Mg-substitution results in a high-capacity retention of ~96 % even after 100 cycles, showcasing the potential of this strategy for overcoming the structural instabilities and enhancing the performance of sodium-ion batteries.

5.
Inorg Chem ; 61(44): 17469-17484, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36279422

RESUMO

The preparation, properties, and short-range order (SRO) structures of glasses in the series (1-x)[2/3Na2S + 1/3P2S5] + x[1/3Na2S + 2/3NaPO2.31N0.46] = Na4P2S7-6xO4.62xN0.92x, where 0 ≤ x ≤ 0.5 (NaPSON), are reported on. In this study, these mixed oxy-sulfide-nitride (MOSN) glasses were prepared by adding the nitrided material NaPO3-(3/2)yNy; y = 0.46 = NaPO2.31N0.46 (NaPON) to the base sulfide glass Na4P2S7. For comparison purposes, additions of the unitrided material, y = 0, NaPO3, were also studied (NaPSO). Accordingly, large batches of bubble-free glass could be prepared making this route of nitrogen doping amendable toward scaling-up the glass melting process; though, only small amounts of nitrogen could be incorporated in this manner. Nitrogen and sulfur compositional analysis were combined with XPS, Raman, FT-IR, and 31P MAS NMR spectroscopies to determine the amount of retained nitrogen in the glass after melting and quenching and to determine the effect of the added nitrogen and oxygen on the structure of the base pure sulfide glass Na4P2S7, x = 0.0. The nitrogen content increased linearly with the addition of NaPON, but was found, through quantitative 31P MAS NMR analysis, to be approximately half that expected at each value of x. Despite the small amount of nitrogen retained in these glasses, profound increases in the glass transition (Tg) and crystallization temperatures (Tc) were found with increasing x. For the intermediate values of x, 0.2 and 0.3, no crystallization of the supercooled melt was observed even 250 °C above the Tg. It was found that the addition of NaPON to the series caused a disproportionation reaction, where the oxide and oxy-nitride SRO species preferentially formed covalent, networking phosphate chains, forcing the sodium modifier to ionic sulfide units with large fractions of nonbridging sulfurs (NBSs). This disproportionation reaction was also observed in the NaPO3 doped series of glasses, but to a smaller extent. Oxygen was found in both bridging oxygen (BO) and nonbridging oxygen (NBOs) structures while the sulfur was predominantly found in nonbridging sulfur (NBS) structures. N 1s XPS and 31P NMR studies provided insight into the nitrogen bearing phosphorus units and the wt % of nitrogen that was retained in the quenched glasses. It was found that trigonally coordinated nitrogen (Nt) was preferentially retained in the melt, whereas it is proposed that the linearly coordinated (doubly bonded) nitrogen (Nd) accounts for the lost nitrogen in the glasses.

6.
Inorg Chem ; 60(18): 13968-13981, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34463479

RESUMO

Nitrogen doping has been shown to greatly improve the stability of solid electrolyte (SE) materials at the anode and cathode interfaces in all solid-state batteries (ASSBs) as widely demonstrated by the LiPON family of compositions. In an effort to expand the use of nitrogen in SEs, in this study, mixed oxy-sulfide nitride (MOSN) glasses were prepared by direct ammonolysis of the sodium oxy-sulfide phosphate Na4P2S7-xOx (NaPSO) glass series to understand the combined effects that oxygen and sulfur have on the incorporation of nitrogen. The short-range order (SRO) structures of the Na4P2S(7-x)-3/2yzOx-3/2y(1-z)Ny (NaPSON) glasses were investigated with Raman and infrared (IR) spectroscopies to understand the effect that nitrogen has in the glass structure. The N content of the glasses was quantified by elemental analysis and confirmed through weight change measurements. By combining this information, it was further possible to determine the anion exchange ratio, z, for the N substitution of O and S as a function of the base NaPSO glass chemistry, x. The composition-dependent glass transition temperature, Tg(x), measured with differential scanning calorimetry (DSC), was found to correlate well with the measured N/P ratio, y, in the NaPSON glasses.

7.
ACS Appl Mater Interfaces ; 15(17): 20946-20957, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078742

RESUMO

In this work, we report a method for producing a thin (<50 µm), mechanically robust, sodium-ion conducting composite solid electrolyte (CSE) by infiltrating the monomers of polyethylene glycol diacrylate (PEGDA) and polyethylene glycol (PEG) and either NaClO4 or NaFSI salt into a silica-based glass-fiber matrix, followed by an UV-initiated in situ polymerization. The glass fiber matrix provided mechanical strength to the CSE and enabled a robust, self-supporting separator. This strategy enabled the development of CSEs with high loadings of PEG as a plasticizer to enhance the ionic conductivity. The fabrication of these CSEs was done under ambient conditions, which was highly scalable and can be easily implemented in roll-to-roll processing. While NaClO4 was found to be unstable with the sodium-metal anode, the use of a NaFSI salt was found to promote stable stripping and plating in a symmetric cell, reaching current densities of as high as 0.67 mA cm-2 at 60 °C. The PEGDA + PEG + NaFSI separators were then used to form solid-state full cells with a cobalt-free, low-nickel layered Na2/3Ni1/3Mn2/3O2 cathode and a sodium-metal anode, achieving a full capacity utilization exhibiting 70% capacity retention after 50 cycles at a cycling rate of C/5 at 60 °C.

8.
Nat Commun ; 13(1): 2854, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606382

RESUMO

All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na3PS4-xOx, where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na3PS4-xOx SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.

9.
ACS Appl Mater Interfaces ; 13(23): 26841-26852, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096695

RESUMO

Glassy sulfide materials have been considered as promising candidates for solid-state electrolytes (SSEs) in lithium and sodium metal (LM and SM) batteries. While much of the current research on lithium glassy SSEs (GSSEs) has focused on the pure sulfide binary Li2S + P2S5 system, we have expanded these efforts by examining mixed-glass-former (MGF) compositions which have mixtures of glass formers, such as P and Si, which allow melt-quenching synthesis under ambient pressure and therefore the use of grain-boundary-free SSEs. We have doped these MGF compositions with oxygen to improve the chemical, electrochemical, and thermal properties of these glasses. In this work, we report on the short-range order (SRO), namely atomic-level, structures of Li2S + SiS2 + P2O5 MGF mixed oxy-sulfide glasses and, for the first time, study the critical current density (CCD) of these Si-doped oxy-sulfide GSSEs in LM symmetric cells. The samples were synthesized by planetary ball milling (PBM), and it was observed that a certain minimum milling time was necessary to achieve a final SRO structure. To address the short-circuiting lithium dendrite (LD) problems that were observed in these GSSEs, we demonstrate a simple and novel strategy for these Si-doped oxy-sulfide GSSEs to engineer the LM-GSSE interface by forming an in situ interlayer via heat treatment. Stable cycling to ∼1200 h at a capacity of 2 mAh·cm-2 per discharge/charge cycle under a current density of 1 mA·cm-2 is achieved. These results indicate that these MGF oxy-sulfide GSSEs combined with an optimized interfacial modification may find use in LM, and by extrapolation, SM, batteries.

10.
ACS Appl Mater Interfaces ; 12(2): 2327-2337, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829004

RESUMO

Due to the volatility of P2S5, the ambient pressure synthesis of Li2S + P2S5 (LPS) has been limited to planetary ball-milling (PBM). To utilize PBM of LPS to generate a solid electrolyte (SE), the as-synthesized powder sample must be pressed into pellets, and as such the presence of as-pressed grain boundaries in the SE cannot be avoided. To eliminate the grain boundaries, LPS doped with SiS2 has been studied because SiS2 lowers the vapor pressure of the melt and promotes strong glass formation, which in combination allows for greater ease in synthesis. In this work, we have examined the structures and electrochemical properties of lithium thiosilicophosphate 0.6Li2S + 0.4[xSiS2 + 1.5(1 - x)PS5/2], 0 ≤ x ≤ 1, glassy solid electrolytes (GSEs) prepared by both PBM and melt-quenching (MQ). It is shown that the critical current density improved after incorporating SiS2, reaching 1.5 mA/cm2 for the x = 0.8 composition. However, the interfacial reaction of MQ GSE with lithium metal introduced microcracks, which shows that further research is needed to explore and develop more stable GSE compositions. These fundamental results can help to understand the interface reaction and formation and as such can provide a guide to design improved homogeneous GSEs with SiS2 as a glass former, which have no grain boundaries and thereby may help suppress lithium dendrite formation.

11.
Nanomaterials (Basel) ; 10(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235596

RESUMO

Gold (Au) and copper (Cu)-based nanostructures are of great interest due to their applicability in various areas including catalysis, sensing and optoelectronics. Nanostructures synthesized by the galvanic displacement method often lead to non-uniform density and poor size distribution. Here, density and size-controlled synthesis of Au and Cu-based nanostructures was made possible by galvanic displacement with limited exposure to hydrofluoric (HF) acid and the use of surfactants like L-cysteine (L-Cys) and cetyltrimethylammonium bromide (CTAB). An approach involving cyclic exposure to HF acid regulated the nanostructure density. Further, the use of surfactants generated monodisperse nanoparticles in the initial stages of the deposition with increased density. The characterization of Au and Cu-based nanostructures was performed by scanning electron microscopy, atomic force microscopy, UV-Visible spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. The surface enhanced Raman spectroscopic measurements demonstrated an increase in the Raman intensity by two to three orders of magnitude for analyte molecules like Rhodamine 6G dye and paraoxon.

12.
ACS Appl Mater Interfaces ; 11(19): 17873-17883, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31007016

RESUMO

Soft composites are critical for soft and flexible materials in energy harvesting, actuators, and multifunctional devices. One emerging approach to create multifunctional composites is through the incorporation of liquid metal (LM) droplets such as eutectic gallium indium (EGaIn) in highly deformable elastomers. The microstructure of such systems is critical to their performance; however, current materials lack control of particle size at diverse volume loadings. Here, we present a fabrication approach to create liquid metal-elastomer composites with independently controllable and highly tunable droplet size (100 nm ≤ D ≤ 80 µm) and volume loading (0 ≤ ϕ ≤ 80%). This is achieved through a combination of shear mixing and sonication of concentrated LM/elastomer emulsions to control droplet size and subsequent dilution and homogenization to tune LM volume loading. These materials are characterized utilizing dielectric spectroscopy supported by analytical modeling, which shows a high relative permittivity of 60 (16× the unfilled elastomer) in a composite with ϕ = 80%, a low tan δ of 0.02, and a significant dependence on ϕ and minor dependence on droplet size. Temperature response and stability are determined using dielectric spectroscopy through temperature and frequency sweeps with DSC. These results demonstrate a wide temperature stability of the liquid metal phase (crystallizing at <-85 °C for D < 20 µm). Additionally, all composites are electrically insulating across wide frequency (0.1 Hz-10 MHz) and temperature (-70 to 100 °C) ranges even up to ϕ = 80%. We highlight the benefit of LM microstructure control by creating all-soft-matter stretchable capacitive sensors with tunable sensitivity. These sensors are further integrated into a wearable sensing glove where we identify different objects during grasping motions. This work enables programmable LM composites for soft robotics and stretchable electronics where flexibility and tunable functional response are critical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA