Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 183(1): 51-66, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184346

RESUMO

Terpene volatiles are found in many important fruit crops, but their relationship to flavor is poorly understood. Here, we demonstrate using sensory descriptive and discriminant analysis that 1,8-cineole contributes a key floral/eucalyptus note to the aroma of ripe 'Hort16A' kiwifruit (Actinidia chinensis). Two quantitative trait loci (QTLs) for 1,8-cineole production were identified on linkage groups 27 and 29a in a segregating A. chinensis population, with the QTL on LG29a colocating with a complex cluster of putative terpene synthase (TPS)-encoding genes. Transient expression in Nicotiana benthamiana and analysis of recombinant proteins expressed in Escherichia coli showed four genes in the cluster (AcTPS1a-AcTPS1d) encoded functional TPS enzymes, which produced predominantly sabinene, 1,8-cineole, geraniol, and springene, respectively. The terpene profile produced by AcTPS1b closely resembled the terpenes detected in red-fleshed A chinensis AcTPS1b expression correlated with 1,8-cineole content in developing/ripening fruit and also showed a positive correlation with 1,8-cineole content in the mapping population, indicating the basis for segregation is an expression QTL. Transient overexpression of AcTPS1b in Actinidia eriantha fruit confirmed this gene produced 1,8-cineole in Actinidia Structure-function analysis showed AcTPS1a and AcTPS1b are natural variants at key TPS catalytic site residues previously shown to change enzyme specificity in vitro. Together, our results indicate that AcTPS1b is a key gene for production of the signature flavor terpene 1,8-cineole in ripe kiwifruit. Using a sensory-directed strategy for compound identification provides a rational approach for applying marker-aided selection to improving flavor in kiwifruit as well as other fruits.


Assuntos
Actinidia/metabolismo , Alquil e Aril Transferases/metabolismo , Frutas/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Odorantes , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Compostos Orgânicos Voláteis/metabolismo
2.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046664

RESUMO

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Assuntos
Mapeamento Cromossômico/métodos , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Pyrus/genética , Sementes/genética , Cromossomos de Plantas , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem
3.
BMC Plant Biol ; 15: 230, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26394845

RESUMO

BACKGROUND: The vigour and precocity of trees highly influences their efficiency in commercial production. In apple, dwarfing rootstocks allow high-density plantings while their precocious flowering enables earlier fruit production. Currently, there is a lack of pear (Pyrus communis L.) rootstocks that are equivalent to the high yielding apple rootstock 'M9'. For the efficient breeding of new Pyrus rootstocks it is crucial to understand the genetic determinants of vigour control and precocity. In this study we used quantitative trait loci (QTLs) analysis to identify genetic loci associated with the desired traits, using a segregating population of 405 F1 P. communis seedlings from a cross between 'Old Home' and 'Louise Bonne de Jersey' (OHxLBJ). The seedlings were grafted as rootstocks with 'Doyenne du Comice' scions and comprehensively phenotyped over four growing seasons for traits related to tree architecture and flowering, in order to describe the growth of the scions. RESULTS: A high density single nucleotide polymorphism (SNP)-based genetic map comprising 597 polymorphic pear and 113 apple markers enabled the detection of QTLs influencing expression of scion vigour and precocity located on linkage groups (LG)5 and LG6 of 'Old Home'. The LG5 QTL maps to a position that is syntenic to the apple 'Malling 9' ('M9') Dw1 locus at the upper end of LG5. An allele of a simple sequence repeat (SSR) associated with apple Dw1 segregated with dwarfing and precocity in pear and was identified in other pear germplasm accessions. The orthology of the vigour-controlling LG5 QTL between apple and pear raises the possibility that the dwarfing locus Dw1 arose before the divergence of apple and pear, and might therefore be present in other Rosaceae species. CONCLUSION: We report the first QTLs associated with vigour control and flowering traits in pear rootstocks. Orthologous loci were found to control scion growth and precocity in apple and pear rootstocks. The application of our results may assist in the breeding process of a pear rootstock that confers both vigour control and precocity to the grafted scion cultivar.


Assuntos
Polimorfismo de Nucleotídeo Único , Pyrus/crescimento & desenvolvimento , Pyrus/genética , Locos de Características Quantitativas , Sintenia , Mapeamento Cromossômico , Marcadores Genéticos , Malus/genética , Malus/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pyrus/metabolismo
4.
Front Plant Sci ; 13: 965397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247546

RESUMO

Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.

5.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34009255

RESUMO

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa "Hayward," is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis "Red5" reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Frutas/genética , Genótipo , Melhoramento Vegetal , Mapeamento Cromossômico
6.
DNA Res ; 24(3): 289-301, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130382

RESUMO

Genetic maps are essential tools for pear genetics and genomics research. In this study, we first constructed an integrated simple sequence repeat (SSR) and single nucleotide polymorphism (SNP)-based consensus genetic map for pear based on common SSR markers between nine published maps. A total of 5,085 markers, including 1,232 SSRs and 3,853 SNPs, were localized on a consensus map spanning 3,266.0 cM in total, with an average marker interval of 0.64 cM, which represents the highest density consensus map of pear to date. Using three sets of high-density SNP-based genetic maps with European pear genetic backgrounds, we anchored a total of 291.5 Mb of the 'Bartlett' v1.0 (Pyrus communis L.) genome scaffolds into 17 pseudo-chromosomes. This accounted for 50.5% of the genome assembly, which was a great improvement on the 29.7% achieved originally. Intra-genome and inter-genome synteny analyses of the new 'Bartlett' v1.1 genome assembly with the Asian pear 'Dangshansuli' (Pyrus bretschneideri Rehd.) and apple (Malus × domestica Borkh.) genomes uncovered four new segmental duplication regions. The integrated high-density SSR and SNP-based consensus genetic map provided new insights into the genetic structure patterns of pear and assisted in the genome assembly of 'Bartlett' through further exploration of different pear genetic maps.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas , Genoma de Planta , Pyrus/genética , Evolução Molecular , Genômica , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
7.
PLoS One ; 9(4): e92644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699266

RESUMO

We present a draft assembly of the genome of European pear (Pyrus communis) 'Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of 'Louise Bonne de Jersey' and 'Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The 'Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas , Genoma de Planta , Pyrus/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Marcadores Genéticos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Malus/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Proteoma/análise , RNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico
8.
PLoS One ; 8(10): e77022, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155917

RESUMO

We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.


Assuntos
Mapeamento Cromossômico , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética , Pyrus/genética , Alelos , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Europa (Continente) , Marcadores Genéticos , Genoma de Planta/genética , Técnicas de Genotipagem , Malus/genética , Repetições de Microssatélites/genética , Linhagem , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA