Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38833323

RESUMO

The emergence and rapid spread of SARS-CoV-2 prompted the global community to identify innovative approaches to diagnose infection and sequence the viral genome because at several points in the pandemic positive case numbers exceeded the laboratory capacity to characterize sufficient samples to adequately respond to the spread of emerging variants. From week 10, 2020, to week 13, 2023, Slovenian routine complete genome sequencing (CGS) surveillance network yielded 41 537 complete genomes and revealed a typical molecular epidemiology with early lineages gradually being replaced by Alpha, Delta, and finally Omicron. We developed a targeted next-generation sequencing based variant surveillance strategy dubbed Spike Screen through sample pooling and selective SARS-CoV-2 spike gene amplification in conjunction with CGS of individual cases to increase throughput and cost-effectiveness. Spike Screen identifies variant of concern (VOC) and variant of interest (VOI) signature mutations, analyses their frequencies in sample pools, and calculates the number of VOCs/VOIs at the population level. The strategy was successfully applied for detection of specific VOC/VOI mutations prior to their confirmation by CGS. Spike Screen complemented CGS efforts with an additional 22 897 samples sequenced in two time periods: between week 42, 2020, and week 24, 2021, and between week 37, 2021, and week 2, 2022. The results showed that Spike Screen can be applied to monitor VOC/VOI mutations among large volumes of samples in settings with limited sequencing capacity through reliable and rapid detection of novel variants at the population level and can serve as a basis for public health policy planning.


Assuntos
COVID-19 , Sequenciamento de Nucleotídeos em Larga Escala , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , COVID-19/virologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Genoma Viral , Eslovênia/epidemiologia
2.
Respir Res ; 25(1): 234, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840154

RESUMO

BACKGROUND: The concurrent circulation of SARS-CoV-2 with other respiratory viruses is unstoppable and represents a new diagnostic reality for clinicians and clinical microbiology laboratories. Multiplexed molecular testing on automated platforms that focus on the simultaneous detection of multiple respiratory viruses in a single tube is a useful approach for current and future diagnosis of respiratory infections in the clinical setting. METHODS: Two time periods were included in the study: from February to April 2022, an early 2022 period, during the gradual lifting of COVID-19 prevention measures in the country, and from October 2022 to April 2023, the 2022/23 respiratory infections season. We analysed a total of 1,918 samples in the first period and 18,131 respiratory samples in the second period using a multiplex molecular assay for the simultaneous detection of Influenza A (Flu-A), Influenza B (Flu-B), Human Respiratory Syncytial Virus (HRSV) and SARS-CoV-2. RESULTS: The results from early 2022 showed a strong dominance of SARS-CoV-2 infections with 1,267/1,918 (66.1%) cases. Flu-A was detected in 30/1,918 (1.6%) samples, HRSV in 14/1,918 (0.7%) samples, and Flu-B in 2/1,918 (0.1%) samples. Flu-A/SARS-CoV-2 co-detections were observed in 11/1,267 (0.9%) samples, and HRSV/SARS-CoV-2 co-detection in 5/1,267 (0.4%) samples. During the 2022/23 winter respiratory season, SARS-CoV-2 was detected in 1,738/18,131 (9.6%), Flu-A in 628/18,131 (3.5%), Flu-B in 106/18,131 (0.6%), and HRSV in 505/18,131 (2.8%) samples. Interestingly, co-detections were present to a similar extent as in early 2022. CONCLUSION: The results show that the multiplex molecular approach is a valuable tool for the simultaneous laboratory diagnosis of SARS-CoV-2, Flu-A/B, and HRSV in hospitalized and outpatients. Infections with Flu-A/B, and HRSV occurred shortly after the COVID-19 control measures were lifted, so a strong reoccurrence of various respiratory infections and co-detections in the post COVID-19 period was to be expected.


Assuntos
COVID-19 , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Influenza Humana/diagnóstico , Influenza Humana/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Vírus Sincicial Respiratório Humano/isolamento & purificação , Vírus Sincicial Respiratório Humano/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genética , Masculino , Feminino , Coinfecção/epidemiologia , Coinfecção/diagnóstico , Pessoa de Meia-Idade , Adulto , Técnicas de Diagnóstico Molecular/métodos , Estações do Ano , Idoso
3.
Euro Surveill ; 28(40)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796441

RESUMO

BackgroundRodent-borne viruses such as orthohantaviruses and arenaviruses cause considerable disease burden with regional and temporal differences in incidence and clinical awareness. Therefore, it is important to regularly evaluate laboratory diagnostic capabilities, e.g. by external quality assessments (EQA).AimWe wished to evaluate the performance and diagnostic capability of European expert laboratories to detect orthohantaviruses and lymphocytic choriomeningitis virus (LCMV) and human antibody response towards orthohantaviruses.MethodsWe conducted an EQA in 2021; molecular panels consisted of 12 samples, including different orthohantaviruses (Seoul, Dobrava-Belgrade (DOBV), Puumala (PUUV) and Hantaan orthohantavirus), LCMV and negative controls. Serological panels consisted of six human serum samples reactive to PUUV, DOBV or negative to orthohantaviruses. The EQA was sent to 25 laboratories in 20 countries.ResultsThe accuracy of molecular detection of orthohantaviruses varied (50‒67%, average 62%) among 16 participating laboratories, while LCMV samples were successfully detected in all 11 participating laboratories (91-100%, average 96%). The accuracy of serological diagnosis of acute and past orthohantavirus infections was on average 95% among 20 participating laboratories and 82% in 19 laboratories, respectively. A variety of methods was used, with predominance of in-house assays for molecular tests, and commercial assays for serological ones.ConclusionSerology, the most common tool to diagnose acute orthohantavirus infections, had a high accuracy in this EQA. The molecular detection of orthohantaviruses needs improvement while LCMV detection (performed in fewer laboratories) had 95% accuracy. Further EQAs are recommended to be performed periodically to monitor improvements and challenges in the diagnostics of rodent-borne diseases.


Assuntos
Infecções por Hantavirus , Orthohantavírus , Humanos , Vírus da Coriomeningite Linfocítica/genética , Europa (Continente)/epidemiologia , Infecções por Hantavirus/diagnóstico , Anticorpos Antivirais
4.
Emerg Infect Dis ; 28(2): 291-301, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35075993

RESUMO

Information on febrile illness caused by tick-borne encephalitis virus (TBEV) without central nervous system involvement is limited. We characterized 98 patients who had TBEV RNA in their blood but no central nervous system involvement at the time of evaluation. Median duration of illness was 7 days; 37 (38%) patients were hospitalized. The most frequent findings were malaise or fatigue (98%), fever (97%), headache (86%), and myalgias (54%); common laboratory findings were leukopenia (88%), thrombocytopenia (59%), and abnormal liver test results (63%). During the illness, blood leukocyte counts tended to improve, whereas thrombocytopenia and liver enzymes tended to deteriorate. At the time of positive PCR findings, 0/98 patients had serum IgG TBEV and 7 serum IgM TBEV; all patients later seroconverted. Viral RNA load was higher in patients with more severe illness but did not differ substantially in relation to several other factors. Illness progressed to tick-borne encephalitis in 84% of patients within 18 days after defervescence.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Anticorpos Antivirais , Sistema Nervoso Central , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia , Humanos , RNA Viral/genética , Carga Viral
5.
BMC Vet Res ; 15(1): 368, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653234

RESUMO

BACKGROUND: The obligate intracellular bacterium Coxiella burnetii causes globally distributed zoonotic Q fever. Ruminant livestock are common reservoirs of C. burnetii. Coxiella burnetii are shed in large numbers in the waste of infected animals and are transmitted by inhalation of contaminated aerosols. This study was conducted to evaluate the prevalence of C. burnetii infection in domestic animals and ticks in areas of Slovenia associated with a history of Q fever outbreaks. RESULTS: A total of 701 ticks were collected and identified from vegetation, domestic animals and wild animals. C. burnetii DNA was detected in 17 out of 701 (2.4%) ticks. No C. burnetii DNA was found in male ticks. Ticks that tested positive in the PCR-based assay were most commonly sampled from wild deer (5.09%), followed by ticks collected from domestic animals (1.16%) and ticks collected by flagging vegetation (0.79%). Additionally, 150 animal blood samples were investigated for the presence of C. burnetii-specific antibodies and pathogen DNA. The presence of pathogen DNA was confirmed in 14 out of 150 (9.3%) blood samples, while specific antibodies were detected in sera from 60 out of 150 (40.4%) animals. CONCLUSIONS: Our results indicate that ticks, although not the primary source of the bacteria, are infected with C. burnetii and may represent a potential source of infection for humans and animals. Ticks collected from animals were most likely found to harbor C. burnetii DNA, and the infection was not lost during molting. The persistence and distribution of pathogens in cattle and sheep indicates that C. burnetii is constantly present in Slovenia.


Assuntos
Coxiella burnetii/isolamento & purificação , Febre Q/veterinária , Carrapatos/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Bovinos , Doenças dos Bovinos/microbiologia , Coxiella burnetii/genética , Coxiella burnetii/imunologia , DNA Bacteriano/sangue , Cervos/microbiologia , Feminino , Masculino , Muda , Reação em Cadeia da Polimerase/veterinária , Prevalência , Febre Q/epidemiologia , Ovinos , Doenças dos Ovinos/microbiologia , Eslovênia/epidemiologia , Zoonoses
6.
Emerg Infect Dis ; 24(7): 1315-1323, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912706

RESUMO

We determined levels of tick-borne encephalitis (TBE) virus (TBEV) RNA in serum samples obtained from 80 patients during the initial phase of TBE in Slovenia. For most samples, levels were within the range of 3-6 log10 copies RNA/mL. Levels were higher in female patients than in male patients, but we found no association between virus load and several laboratory and clinical parameters, including severity of TBE. However, a weak humoral immune response was associated with a more severe disease course, suggesting that inefficient clearance of virus results in a more serious illness. To determine whether a certain genetic lineage of TBEV had a higher virulence potential, we obtained 56 partial envelope protein gene sequences by directly sequencing reverse transcription PCR products from clinical samples of patients. This method provided a large set of patient-derived TBEV sequences. We observed no association between phylogenetic clades and virus load or disease severity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/virologia , RNA Viral , Carga Viral , Adulto , Anticorpos Antivirais/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Filogenia , Eslovênia/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38179904

RESUMO

Monkeypox virus (MPXV), originally endemic in West Africa (Clade II) and Central Africa (Clade I), has recently emerged worldwide and has reinforced the need for rapid and accurate MPXV diagnostics. This review presents and critically discusses the range of virological methods for laboratory diagnosis and characterization of MPXV as well as related lessons learned and practical experience gained from the 2022 Mpox global outbreak. Real-time PCR is currently considered the diagnostic gold standard and ensures accurate and timely confirmation of suspected Mpox cases based on suspicious skin lesions, and digital PCR improves the precision of MPXV DNA quantification. Whole genome sequencing reveals the diversity within the Clade IIb outbreak and highlights the role of microevolution in the adaptation of the virus to the human host. Continuous genomic surveillance is important for better understanding of human-to-human transmission and prevention of the emergence of variola virus-like strains. Traditional virological methods such as electron microscopy and virus isolation remain essential for comprehensive virus characterization, particularly in the context of vaccine and antiviral drug development. Despite the current challenges, serological tests detecting a range of anti-MPXV antibodies are important adjunct diagnostic and research tools for confirmation of late-presenting or asymptomatic MPXV cases, contact tracing, epidemiological studies, seroepidemiological surveys, and better understanding of the role of IgG and neutralizing antibodies in the immune response to infection and vaccination. A multidisciplinary approach combining advanced molecular techniques with traditional virological methods is important for rapid and reliable diagnosis, surveillance, and control of the outbreak.


Assuntos
Monkeypox virus , Mpox , Humanos , Técnicas de Laboratório Clínico , Surtos de Doenças/prevenção & controle , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiologia
8.
Front Immunol ; 14: 1190803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261350

RESUMO

Tick-borne encephalitis (TBE) is a viral infection of the human central nervous system caused by the TBE virus (TBEV). The most effective protective measure against TBE is vaccination. Despite the highly immunogenic vaccine, cases of vaccine breakthroughs (VBTs) occur. One of the first targets of infection is dendritic cells (DC), which represent a fundamental bridge between innate and adaptive immunity through antigen presentation, costimulation, and cytokine production. Therefore, we investigated the activation and maturation of DCs and cytokine production after in vitro TBEV stimulation of peripheral blood mononuclear cells (PBMCs) obtained from VBT and unvaccinated TBE patients. Our results showed that the expression of HLA-DR and CD86 on DCs, was upregulated to a similar extent in both vaccinated and unvaccinated TBE patients but differed in cytokine production after stimulation with TBEV. PBMCs from patients with VBT TBE responded with lower levels of IFN-α and the proinflammatory cytokines IL-12 (p70) and IL-15 after 24- and 48-hour in vitro stimulation with TBEV, possibly facilitating viral replication and influencing the development of cell-mediated immunity. On the other hand, significantly higher levels of IL-6 in addition to an observed trend of higher expression of TNF-α measured after 6 days of in vitro stimulation of PBMC could support disruption of the blood-brain barrier and promote viral and immune cell influx into the CNS, leading to more severe disease in VBT TBE patients.


Assuntos
Encefalite Transmitida por Carrapatos , Vacinas Virais , Humanos , Citocinas , Leucócitos Mononucleares , Interleucina-12 , Células Dendríticas
9.
Acta Dermatovenerol Alp Pannonica Adriat ; 32(3): 111-117, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37749971

RESUMO

INTRODUCTION: Monkeypox virus (MPXV), typically endemic in West and Central Africa, has raised global concern due to the recent outbreak in several non-endemic countries with human-to-human transmission. Here we present a comprehensive analysis of MPXV genomes from Slovenia. METHODS: Two real-time polymerase chain reaction (RT-PCR) assays for Orthopoxvirus (OPV) and MPXV genes were used for laboratory confirmation of mpox. Complete MPXV genomic sequences were obtained using nanopore long reads and Illumina technology. Phylogenetic analyses compared the Slovenian MPXV sequences with the global sequences. RESULTS: A total of 49 laboratory-confirmed mpox cases were diagnosed in Slovenia in 2022, mainly affecting males under 40. In 48 cases, a complete genome sequence was obtained and phylogenetic analysis revealed five distinct lineages (B.1, B.1.14, B.1.2, B.1.3, and A.2.1), with B.1 and B.1.3 dominating, suggesting multiple introductions into Slovenia. Genome analysis revealed significant divergence from the reference MPXV-M5312_HM12_Rivers. CONCLUSIONS: The genetic diversity observed in the Slovenian MPXV sequences sheds light on the complex dynamics of the 2022 mpox outbreak and highlights the need for further research to understand the impact of mutations on MPXV functional characteristics and their role in the evolution and diversification of current lineages.


Assuntos
Monkeypox virus , Mpox , Masculino , Humanos , Monkeypox virus/genética , Epidemiologia Molecular , Eslovênia/epidemiologia , Mpox/diagnóstico , Mpox/epidemiologia , Filogenia , Surtos de Doenças
10.
Front Microbiol ; 14: 1314538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156013

RESUMO

Introduction: Tick-borne encephalitis (TBE) is an emerging vector-borne and food-borne disease caused by the tick-borne encephalitis virus (TBEV; Orthoflavivirus encephalitidis), with a distribution spanning the Eurasian continent. Despite its significant public health impact in various European regions, TBE remains largely underdiagnosed in Serbia due to limited awareness and diagnostic challenges. In response to this, our study aimed to comprehensively assess TBEV exposure in individuals infested with ticks and to identify potential TBEV foci within Serbia. Materials and methods: From 2019 to 2021, we conducted an observational study involving 450 patients who reported tick infestations. Results: Our demographic analysis revealed a median age of 38 years, with a slight male predominance among the participants. We documented tick infestations in 38 municipalities across 14 districts of Serbia, with a notable concentration in proximity to Fruska Gora Mountain. The ticks most frequently removed were Ixodes ricinus, with nymphs and adult females being the predominant stages. On average, nymphs were removed after about 27.1 hours of feeding, while adult females remained attached for approximately 44.4 hours. Notably, we found age as a significant predictor of infestation time for both nymphs and adult females. Furthermore, we detected TBEV-neutralizing antibodies in 0.66% of the serum samples, shedding light on potential TBEV foci, particularly in Fruska Gora Mountain and other regions of Serbia. Conclusion: Our study emphasizes the urgent need for active TBE surveillance programs, especially in areas suspected of hosting TBEV foci, in order to assess the true TBE burden, identify at-risk populations, and implement effective preventive measures.

11.
Viruses ; 15(3)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36992499

RESUMO

Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.


Assuntos
Dermacentor , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Humanos , Europa (Continente)/epidemiologia , Animais Selvagens , Mamíferos
12.
J Med Entomol ; 49(2): 436-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22493864

RESUMO

In a previous study, the presence of tick-borne encephalitis virus (TBEV) in questing Ixodes ricinus L. ticks and in field derived ticks that engorged on small mammals (n = 9,986) was investigated at four sites located in a TBE area in Switzerland. Two of these sites were already recognized as TBE foci (Thun and Belp) and the screening of ticks revealed the presence of TBEV in ticks at a third site, Kiesen, but not at the fourth one, Trimstein. The aim here was to test another approach to detect TBE endemic areas. Sera from 333 small mammals (Apodemus flavicollis, A. sylvaticus, Myodes glareolus) captured in 2006 and 2007 at the four sites were examined for the presence of antibodies against TBEV using immunofluorescence and avidity tests. Overall the prevalence of antibodies against TBEV in rodents reached 3.6% (12/333). At two sites known as TBE foci, Thun and Belp, anti-TBEV antibodies were detected in 9.9% (9/91) and 1.6% (1/63) of rodent sera, respectively. At the third site, Kiesen, recently identified as a TBE focus by the detection of TBEV in ticks, anti-TBEV antibodies were detected in 1.8% (2/113) of rodent sera. Finally, at Trimstein, none of the examined rodent sera had antibodies against TBEV (0/66). This study shows another approach to detect TBE foci by testing antibodies in small mammal sera that is less time-consuming and less expensive than molecular tools.


Assuntos
Arvicolinae/virologia , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/epidemiologia , Murinae/virologia , Animais , Arvicolinae/sangue , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/sangue , Feminino , Masculino , Murinae/sangue , Suíça
13.
Pathogens ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35456137

RESUMO

Several professional societies advise against using real-time Reverse-Transcription PCR (rtRT-PCR) cycle threshold (Ct) values to guide clinical decisions. We comparatively assessed the variability of Ct values generated by six diagnostic approaches by testing serial dilutions of well-characterized isolates of 10 clinically most relevant SARS-CoV-2 genomic variants: Alpha, Beta, Gamma, Delta, Eta, Iota, Omicron, A.27, B.1.258.17, and B.1 with D614G mutation. Comparison of three fully automated rtRT-PCR analyzers and a reference manual rtRT-PCR assay using RNA isolated with three different nucleic acid isolation instruments showed substantial inter-variant intra-test and intra-variant inter-test variability. Ct value differences were dependent on both the rtRT-PCR platform and SARS-CoV-2 genomic variant. Differences ranging from 2.0 to 8.4 Ct values were observed when testing equal concentrations of different SARS-CoV-2 variants. Results confirm that Ct values are an unreliable surrogate for viral load and should not be used as a proxy of infectivity and transmissibility, especially when different rtRT-PCR assays are used in parallel and multiple SARS-CoV-2 variants are circulating. A detailed turn-around time (TAT) comparative assessment showed substantially different TATs, but parallel use of different diagnostic approaches was beneficial and complementary, allowing release of results for more than 81% of non-priority samples within 8 h after admission.

14.
Emerg Microbes Infect ; 11(1): 1647-1656, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35657098

RESUMO

Tick-borne encephalitis (TBE) usually has a biphasic course which begins with unspecific febrile illness, followed by central nervous system involvement. Because TBE is not yet suspected during the initial phase, knowledge of early TBE pathogenesis is incomplete. Herein we evaluated laboratory and immune findings in the initial and second (meningoencephalitic) phase of TBE in 88 well-defined adult patients. Comparison of nine laboratory blood parameters in both phases of TBE revealed that laboratory abnormalities, consisting of low leukocyte and platelet counts and increased liver enzymes levels, were predominately associated with the initial phase of TBE and resolved thereafter. Assessment of 29 immune mediators in serum during the initial phase, and in serum and cerebrospinal fluid (CSF) during the second phase of TBE revealed highly distinct clustering patterns among the three groups. In the initial phase of TBE, the primary finding in serum was a rather heterogeneous immune response involving innate (CXCL11), B cell (CXCL13, BAFF), and T cell mediators (IL-27 and IL-4). During the second phase of TBE, growth factors associated with angiogenesis (GRO-α and VEGF-A) were the predominant characteristic in serum, whereas innate and Th1 mediators were the defining feature of immune responses in CSF. These findings imply that distinct immune processes play a role in the pathophysiology of different phases of TBE and in different compartments.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Meningoencefalite , Adulto , Linfócitos B , Humanos
15.
Viruses ; 14(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746738

RESUMO

The clinical presentation of tick-borne encephalitis virus (TBEV) infection varies from asymptomatic to severe meningoencephalitis or meningoencephalomyelitis. The TBEV subtype has been suggested as one of the most important risk factors for disease severity, but TBEV genetic characterization is difficult. Infection is usually diagnosed in the post-viremic phase, and so relevant clinical samples of TBEV are extremely rare and, when present, are associated with low viral loads. To date, only two complete TBEV genomes sequenced directly from patient clinical samples are publicly available. The aim of this study was to develop novel protocols for the direct sequencing of the TBEV genome, enabling studies of viral genetic determinants that influence disease severity. We developed a novel oligonucleotide primer scheme for amplification of the complete TBEV genome. The primer set was tested on 21 clinical samples with various viral loads and collected over a 15-year period using the two most common sequencing platforms. The amplicon-based strategy was compared to direct shotgun sequencing. Using the novel primer set, we successfully obtained nearly complete TBEV genomes (>90% of genome) from all clinical samples, including those with extremely low viral loads. Comparison of consensus sequences of the TBEV genome generated using the novel amplicon-based strategy and shotgun sequencing showed no difference. We conclude that the novel primer set is a powerful tool for future studies on genetic determinants of TBEV that influence disease severity and will lead to a better understanding of TBE pathogenesis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Sequência de Bases , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/diagnóstico , Genes Virais , Humanos , Sequenciamento Completo do Genoma
16.
Exp Appl Acarol ; 54(1): 65-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21153757

RESUMO

Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project ( http://www.icttd.nl )-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website ( http://www.tickbornezoonoses.org ) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.


Assuntos
Vetores Aracnídeos/microbiologia , Bases de Dados como Assunto , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/microbiologia , Zoonoses/microbiologia , Animais , Países em Desenvolvimento , Geografia , Humanos , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/epidemiologia , Clima Tropical , Zoonoses/epidemiologia
17.
J Clin Virol ; 139: 104820, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865031

RESUMO

BACKGROUND: Neutralization tests (NT) are the gold standard for detecting and quantifying anti-SARS-CoV-2 neutralizing antibodies (NAb), but their complexity restricts them to research settings or reference laboratories. Antibodies against S protein receptor binding domain (RBD) have been shown to confer a neutralizing activity against SARS-CoV-2. Assays quantitatively measuring anti-S1-RBD-SARS-CoV-2 antibodies could be of great value for NAb screening of potential donors for convalescent-phase plasma therapy, assessing natural or vaccine-induced immunity, stratifying individuals for vaccine receipt, and documenting vaccine response. METHODS: Elecsys Anti-SARS-CoV-2 S (Elecsys-S), a high-throughput automated electrochemiluminescence double-antigen sandwich immunoassay for quantitative measurement of pan-anti-S1-RBD-SARS-CoV-2 antibodies, was evaluated against NT on 357 patients with PCR-confirmed SARS-CoV-2 infection. NT was performed in a BSL-3 laboratory using a Slovenian SARS-CoV-2 isolate; the NT titer ≥1:20 was considered positive. RESULTS: Elecsys-S detected pan-anti-S1-RBD-SARS-CoV-2 antibodies in 352/357 (98.6 %) samples. NAb were identified by NT in 257/357 (72 %) samples. The Elecsys-S/NT agreement was moderate (Cohen's kappa 0.56). High NT titer antibodies (≥1:160) were detected in 106/357 (30 %) samples. Elecsys-S's pan-anti-S1-RBD-SARS-CoV-2 antibody concentrations correlated with individual NT titer categories (the lowest concentrations were identified in NT-negative samples and the highest in samples with NT titer 1:1,280), and the Elecsys-S cutoff value for reasonable prediction of NAb generated after natural infection was established (133 BAU/mL). CONCLUSION: Although NT should remain the gold standard for assessing candidates for convalescent-phase plasma donors, selected commercial anti-SARS-CoV-2 assays with optimized cutoff, like Elecsys-S, could be used for rapid, automated, and large-scale screening of individuals with clinically relevant NAb levels as suitable donors.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Imunoensaio/métodos , Medições Luminescentes/métodos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Teste Sorológico para COVID-19 , Ensaios de Triagem em Larga Escala , Humanos , Glicoproteína da Espícula de Coronavírus/química
18.
Vector Borne Zoonotic Dis ; 21(5): 351-357, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33601964

RESUMO

Francisella tularensis is the etiologic agent of tularemia, a bacterial zoonotic disease. The genome of F. tularensis shows a recent evolutionary change, especially in reservoirs. Variable number of tandem repeats (VNTR) is described as a high-speed molecular clock and can thus be used as a high-resolution typing system. The main objective of our study was to investigate the molecular diversity of F. tularensis strains and reveal possible sources of infection. Using real-time PCR targeting the ISFtu2 region, we successfully amplified targeted DNA in 13/31 Slovenian patients with a clinical diagnosis of tularemia, and with PCR targeting the fopA gene, we obtained 11/13 PCR products. Sequencing revealed that all samples were identified as F. tularensis subsp. holarctica. We successfully obtained one F. tularensis isolate from a lymph node aspirate by culture on chocolate agar. Our isolate was clustered into major clade B12 (subclade B43). We optimized VNTR typing to be used directly on clinical samples. Multiple-locus VNTR analysis (MLVA) revealed five unique MLVA types; 45.5% samples had the same MLVA type, another 27.3% shared a different MLVA type, and each of the remaining had a unique MLVA type. Most samples differed at only two VNTR markers (Ft-M03 and Ft-M06). Additionally, we investigated samples from small mammals (n = 532) and Ixodes ricinus ticks (n = 232) captured in the same geographical area in which patients with tularemia were found. No F. tularensis DNA was detected in samples of small mammals or I. ricinus ticks. The diversity of MLVA types in Slovenia was high, despite the small region, but most of the samples from the same region shared the same MLVA type. Our results suggest that MLVA is a useful tool for quick molecular characterization of F. tularensis directly from patient samples, especially when investigating geographically localized outbreaks.


Assuntos
Francisella tularensis , Ixodes , Tularemia , Animais , Francisella tularensis/genética , Repetições Minissatélites , Eslovênia/epidemiologia , Tularemia/epidemiologia , Tularemia/veterinária
19.
Clin Microbiol Infect ; 27(7): 1039.e1-1039.e7, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838303

RESUMO

OBJECTIVES: Seroprevalence surveys provide crucial information on cumulative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. This Slovenian nationwide population study is the first longitudinal 6-month serosurvey using probability-based samples across all age categories. METHODS: Each participant supplied two blood samples: 1316 samples in April 2020 (first round) and 1211 in October/November 2020 (second round). The first-round sera were tested using Euroimmun Anti-SARS-CoV-2 ELISA IgG (ELISA) and, because of uncertain estimates, were retested using Elecsys Anti-SARS-CoV-2 (Elecsys-N) and Elecsys Anti-SARS-CoV-2 S (Elecsys-S). The second-round sera were concomitantly tested using Elecsys-N/Elecsys-S. RESULTS: The populations of both rounds matched the overall population (n = 3000), with minor settlement type and age differences. The first-round seroprevalence corrected for the ELISA manufacturer's specificity was 2.78% (95% highest density interval [HDI] 1.81%-3.80%), corrected using pooled ELISA specificity calculated from published data 0.93% (95% CI 0.00%-2.65%), and based on Elecsys-N/Elecsys-S results 0.87% (95% HDI 0.40%-1.38%). The second-round unadjusted lower limit of seroprevalence on 11 November 2020 was 4.06% (95% HDI 2.97%-5.16%) and on 3 October 2020, unadjusted upper limit was 4.29% (95% HDI 3.18%-5.47%). CONCLUSIONS: SARS-CoV-2 seroprevalence in Slovenia increased four-fold from late April to October/November 2020, mainly due to a devastating second wave. Significant logistic/methodological challenges accompanied both rounds. The main lessons learned were a need for caution when relying on manufacturer-generated assay evaluation data, the importance of multiple manufacturer-independent assay performance assessments, the need for concomitant use of highly-specific serological assays targeting different SARS-CoV-2 proteins in serosurveys conducted in low-prevalence settings or during epidemic exponential growth and the usefulness of a Bayesian approach for overcoming complex methodological challenges.


Assuntos
Teste Sorológico para COVID-19/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/imunologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Teorema de Bayes , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Pandemias , Vigilância da População , Prevalência , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Distribuição por Sexo , Eslovênia/epidemiologia , Adulto Jovem
20.
Front Cell Infect Microbiol ; 11: 696337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277474

RESUMO

Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-ß and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.


Assuntos
Encefalite Transmitida por Carrapatos , Vacinas , Citocinas , Encefalite Transmitida por Carrapatos/prevenção & controle , Humanos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA