Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 17(3): 760-75, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15722468

RESUMO

Plastids of nongreen tissues can import carbon in the form of glucose 6-phosphate via the glucose 6-phosphate/phosphate translocator (GPT). The Arabidopsis thaliana genome contains two homologous GPT genes, AtGPT1 and AtGPT2. Both proteins show glucose 6-phosphate translocator activity after reconstitution in liposomes, and each of them can rescue the low-starch leaf phenotype of the pgi1 mutant (which lacks plastid phosphoglucoisomerase), indicating that the two proteins are also functional in planta. AtGPT1 transcripts are ubiquitously expressed during plant development, with highest expression in stamens, whereas AtGPT2 expression is restricted to a few tissues, including senescing leaves. Disruption of GPT2 has no obvious effect on growth and development under greenhouse conditions, whereas the mutations gpt1-1 and gpt1-2 are lethal. In both gpt1 lines, distorted segregation ratios, reduced efficiency of transmission in males and females, and inability to complete pollen and ovule development were observed, indicating profound defects in gametogenesis. Embryo sac development is arrested in the gpt1 mutants at a stage before the fusion of the polar nuclei. Mutant pollen development is associated with reduced formation of lipid bodies and small vesicles and the disappearance of dispersed vacuoles, which results in disintegration of the pollen structure. Taken together, our results indicate that GPT1-mediated import of glucose 6-phosphate into nongreen plastids is crucial for gametophyte development. We suggest that loss of GPT1 function results in disruption of the oxidative pentose phosphate cycle, which in turn affects fatty acid biosynthesis.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Antiporters/genética , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Microscopia Eletrônica , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/ultraestrutura
2.
Plant Physiol ; 131(3): 1178-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12644669

RESUMO

Analysis of the Arabidopsis genome revealed the complete set of plastidic phosphate translocator (pPT) genes. The Arabidopsis genome contains 16 pPT genes: single copies of genes coding for the triose phosphate/phosphate translocator and the xylulose phosphate/phosphate translocator, and two genes coding for each the phosphoenolpyruvate/phosphate translocator and the glucose-6-phosphate/phosphate translocator. A relatively high number of truncated phosphoenolpyruvate/phosphate translocator genes (six) and glucose-6-phosphate/phosphate translocator genes (four) could be detected with almost conserved intron/exon structures as compared with the functional genes. In addition, a variety of PT-homologous (PTh) genes could be identified in Arabidopsis and other organisms. They all belong to the drug/metabolite transporter superfamily showing significant similarities to nucleotide sugar transporters (NSTs). The pPT, PTh, and NST proteins all possess six to eight transmembrane helices. According to the analysis of conserved motifs in these proteins, the PTh proteins can be divided into (a) the lysine (Lys)/arginine group comprising only non-plant proteins, (b) the Lys-valine/alanine/glycine group of Arabidopsis proteins, (c) the Lys/asparagine group of Arabidopsis proteins, and (d) the Lys/threonine group of plant and non-plant proteins. None of these proteins have been characterized so far. The analysis of the putative substrate-binding sites of the pPT, PTh, and NST proteins led to the suggestion that all these proteins share common substrate-binding sites on either side of the membrane each of which contain a conserved Lys residue.


Assuntos
Arabidopsis/genética , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Sítios de Ligação , Transporte Biológico , Proteínas de Cloroplastos , Regulação da Expressão Gênica de Plantas , Glucose-6-Fosfato/genética , Glucose-6-Fosfato/metabolismo , Lisina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Família Multigênica/genética , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Pentosefosfatos/genética , Pentosefosfatos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfoenolpiruvato/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos
3.
Plant Physiol ; 128(2): 512-22, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11842155

RESUMO

Plastids are the site of the reductive and the oxidative pentose phosphate pathways, which both generate pentose phosphates as intermediates. A plastidic transporter from Arabidopsis has been identified that is able to transport, in exchange with inorganic phosphate or triose phosphates, xylulose 5-phosphate (Xul-5-P) and, to a lesser extent, also ribulose 5-phosphate, but does not accept ribose 5-phosphate or hexose phosphates as substrates. Under physiological conditions, Xul-5-P would be the preferred substrate. Therefore, the translocator was named Xul-5-P/phosphate translocator (XPT). The XPT shares only approximately 35% to 40% sequence identity with members of both the triose phosphate translocator and the phosphoenolpyruvate/phosphate translocator classes, but a higher identity of approximately 50% to glucose 6-phosphate/phosphate translocators. Therefore, it represents a fourth group of plastidic phosphate translocators. Database analysis revealed that plant cells contain, in addition to enzymes of the oxidative branch of the oxidative pentose phosphate pathway, ribose 5-phosphate isomerase and ribulose 5-phosphate epimerase in both the cytosol and the plastids, whereas the transketolase and transaldolase converting the produced pentose phosphates to triose phosphates and hexose phosphates are probably solely confined to plastids. It is assumed that the XPT function is to provide the plastidic pentose phosphate pathways with cytosolic carbon skeletons in the form of Xul-5-P, especially under conditions of a high demand for intermediates of the cycles.


Assuntos
Arabidopsis/fisiologia , Via de Pentose Fosfato/fisiologia , Plastídeos/fisiologia , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Transporte Biológico , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Clonagem Molecular , Citosol/fisiologia , Etiquetas de Sequências Expressas , Expressão Gênica , Dados de Sequência Molecular , Via de Pentose Fosfato/genética , Pentosefosfatos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Ribulosefosfatos/metabolismo , Homologia de Sequência de Aminoácidos , Xilulose/metabolismo
4.
Plant J ; 36(3): 411-20, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14617097

RESUMO

The Arabidopsis thaliana chlorophyll a/b-binding protein underexpressed 1 (cue1) mutant shows a reticulate leaf phenotype and is defective in a plastidic phosphoenolpyruvate (PEP)/phosphate translocator (AtPPT1). A functional AtPPT1 providing plastids with PEP for the shikimate pathway is therefore essential for correct leaf development. The Arabidopsis genome contains a second PPT gene, AtPPT2. Both transporters share similar substrate specificities and are therefore able to transport PEP into plastids. The cue1 phenotype could partially be complemented by ectopic expression of AtPPT2 but obviously not by the endogeneous AtPPT2. Both genes are differentially expressed in most tissues: AtPPT1 is mainly expressed in the vasculature of leaves and roots, especially in xylem parenchyma cells, but not in leaf mesophyll cells, whereas AtPPT2 is expressed ubiquitously in leaves, but not in roots. The expression profiles are corroborated by tissue-specific transport data. As AtPPT1 expression is absent in mesophyll cells that are severely affected in the cue1 mutant, we propose that the vasculature-located AtPPT1 is involved in the generation of phenylpropanoid metabolism-derived signal molecules that trigger development in interveinal leaf regions. This signal probably originates from the root vasculature where only AtPPT1, but not AtPPT2, is present.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Proteínas de Membrana Transportadoras/metabolismo , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA