Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571100

RESUMO

A new para-aramid aerogel based on a polymer made by the reaction of terephthaloyl dichloride with 2-(4-aminophenyl)-1H-benzimidazol-5-amine (PABI) is introduced. The aerogel readily bound Pd (+2) ions and was used as a hydrogenation catalyst in some industrially actual reactions. The new material, which did not contain p-phenylenediamine moieties, was prepared in two form factors: bulk samples and spherical pellets of 700-900 µm in diameter. Aerogels were synthesized from 1% or 5% solutions of PABI in N,N-dimethylacetamide via gelation with acetone or isopropanol and had a density of 0.057 or 0.375 g/cm3 depending on the concentration of the starting PABI solution. The specific surface area of the obtained samples was 470 or 320 m2/g. Spherical pellets containing Pd were prepared from a solution of PdCl2 in PABI and were used as heterogeneous catalysts for the gas-phase hydrogenation of unsaturated organic compounds presenting the main types of industrially important substrates: olefins, acetylenes, aromatics, carbonyls, and nitriles. Catalytic hydrogenation of gaseous hexene-1, hexyne-3, cyclohexene, and acrylonitrile C=C bond proceeded with a 99% conversion at ambient pressure, but the catalyst failed to reduce acetone at 150 °C and benzene and ethyl acetate even at 200 °C. The only product of acrylonitrile hydrogenation was propionitrile. The prepared catalysts showed high selectivity, which is important for the chemistry of complex organic compounds.

2.
Polymers (Basel) ; 12(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369992

RESUMO

Several important synthesis pathways for metal-organic frameworks (MOFs) were applied to determine how the synthesis methods and conditions affect the structure and adsorption capacity of the resulting samples. In the present work, three different synthesis routes were used to obtain copper trimesinate coordination polymer: Slow evaporation (A), solvothermal synthesis using a polyethylene glycol (PEG-1500) modulator (B), and green synthesis in water (C). This MOF was characterized by elemental analysis, infrared spectrometry, X-ray diffraction, scanning electron microscopy, thermogravimetry and volumetric nitrogen adsorption/desorption. The samples have permanent porosity and a microporous structure with a large surface area corresponding to the adsorption type I. The obtained MOF was tested as a sorbent to remove organic dyes methylene blue (МВ), Congo red (CR) and methyl violet (MV) as examples. Dye adsorption followed pseudo-first-order kinetics. The equilibrium data were fitted to the Langmuir and Freundlich isotherm models, and the isotherm constants were determined. Thermodynamic parameters, such as changes in the free energy of adsorption (ΔG0), enthalpy (ΔH0), and entropy (ΔS0), were calculated. Thermolysis of copper trimesinate leads to the formation of carbon materials Cu@C with a high purity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA