Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(34): 20836-20847, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32769205

RESUMO

The type VII protein secretion system (T7SS) is conserved across Staphylococcus aureus strains and plays important roles in virulence and interbacterial competition. To date, only one T7SS substrate protein, encoded in a subset of S. aureus genomes, has been functionally characterized. Here, using an unbiased proteomic approach, we identify TspA as a further T7SS substrate. TspA is encoded distantly from the T7SS gene cluster and is found across all S. aureus strains as well as in Listeria and Enterococci. Heterologous expression of TspA from S. aureus strain RN6390 indicates its C-terminal domain is toxic when targeted to the Escherichia coli periplasm and that it depolarizes the cytoplasmic membrane. The membrane-depolarizing activity is alleviated by coproduction of the membrane-bound TsaI immunity protein, which is encoded adjacent to tspA on the S. aureus chromosome. Using a zebrafish hindbrain ventricle infection model, we demonstrate that the T7SS of strain RN6390 promotes bacterial replication in vivo, and deletion of tspA leads to increased bacterial clearance. The toxin domain of TspA is highly polymorphic and S. aureus strains encode multiple tsaI homologs at the tspA locus, suggestive of additional roles in intraspecies competition. In agreement, we demonstrate TspA-dependent growth inhibition of RN6390 by strain COL in the zebrafish infection model that is alleviated by the presence of TsaI homologs.


Assuntos
Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Família Multigênica/genética , Transporte Proteico/genética , Proteômica , Infecções Estafilocócicas/microbiologia , Toxinas Biológicas/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Virulência/genética , Peixe-Zebra/microbiologia
2.
Proc Natl Acad Sci U S A ; 114(10): E1958-E1967, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223511

RESUMO

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.


Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Especificidade por Substrato
3.
Microbiology (Reading) ; 164(5): 816-820, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29620499

RESUMO

The type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1-EssC4) that display sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a strain deleted for essC1, and that they are able to mediate secretion of EsxA, an essential component of the secretion apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is only encoded in essC1-specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a model in which the C-terminal domain of EssC interacts with substrate proteins, whereas EsxA interacts elsewhere.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Deleção de Genes , Variação Genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica , Transporte Proteico , Especificidade por Substrato
4.
Microbiology (Reading) ; 163(12): 1839-1850, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29171824

RESUMO

The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.


Assuntos
Proteínas de Bactérias/metabolismo , Hemina/metabolismo , Ferro/metabolismo , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Sistemas de Secreção Tipo VII/genética
5.
Biochem J ; 473(13): 1941-52, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27130157

RESUMO

The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1-D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Staphylococcus aureus/metabolismo
6.
Mol Microbiol ; 98(1): 111-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112072

RESUMO

The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate-bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild-type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue-native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild-type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate-induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Arginina , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Periplasma/metabolismo , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico
7.
Microbiology (Reading) ; 162(12): 2136-2146, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27902441

RESUMO

Salmonella enterica serovar Typhimurium is a Gram-negative bacterium with a flexible respiratory capability. Under anaerobic conditions, S. enterica can utilize a range of terminal electron acceptors, including selenate, to sustain respiratory electron transport. The S. enterica selenate reductase is a membrane-bound enzyme encoded by the ynfEFGH-dmsD operon. The active enzyme is predicted to comprise at least three subunits where YnfE is a molybdenum-containing catalytic subunit. The YnfE protein is synthesized with an N-terminal twin-arginine signal peptide and biosynthesis of the enzyme is coordinated by a signal peptide binding chaperone called DmsD. In this work, the interaction between S. enterica DmsD and the YnfE signal peptide has been studied by chemical crosslinking. These experiments were complemented by genetic approaches, which identified the DmsD binding epitope within the YnfE signal peptide. YnfE signal peptide residues L24 and A28 were shown to be important for assembly of an active selenate reductase. Conversely, a random genetic screen identified the DmsD V16 residue as being important for signal peptide recognition and selenate reductase assembly.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredutases/metabolismo , Sinais Direcionadores de Proteínas , Salmonella typhimurium/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Óperon , Oxirredutases/química , Oxirredutases/genética , Ligação Proteica , Salmonella typhimurium/química , Salmonella typhimurium/genética , Alinhamento de Sequência
8.
Mol Microbiol ; 93(5): 928-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040609

RESUMO

The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Regulação Bacteriana da Expressão Gênica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/genética , Virulência
9.
Mol Microbiol ; 85(5): 945-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22742417

RESUMO

The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat substrates. Here we have taken a random mutagenesis approach to identify substitutions in Escherichia coli TatC that inactivate protein transport. We identify 32 individual amino acid substitutions that abolish or severely compromise TatC activity. The majority of the inactivating substitutions fall within the first two periplasmic loops of TatC. These regions are predicted to have conserved secondary structure and results of extensive amino acid insertion and deletion mutagenesis are consistent with these conserved elements being essential for TatC function. Three inactivating substitutions were identified in the fifth transmembrane helix of TatC. The inactive M205R variant could be suppressed by mutations affecting amino acids in the transmembrane helix of TatB. A physical interaction between TatC helix 5 and the TatB transmembrane helix was confirmed by the formation of a site-specific disulphide bond between TatC M205C and TatB L9C variants. This is the first molecular contact site mapped to single amino acid level between these two proteins.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Transporte Proteico/genética , Transporte Proteico/fisiologia
10.
J Bacteriol ; 192(13): 3474-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20453099

RESUMO

DcuS is the membrane-integral sensor histidine kinase of the DcuSR two-component system in Escherichia coli that responds to extracellular C(4)-dicarboxylates. The oligomeric state of full-length DcuS was investigated in vitro and in living cells by chemical cross-linking and by fluorescence resonance energy transfer (FRET) spectroscopy. The FRET results were quantified by an improved method using background-free spectra of living cells for determining FRET efficiency (E) and donor fraction {f(D) = (donor)/[(donor) + (acceptor)]}. Functional fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein to DcuS were used for in vivo FRET measurements. Based on noninteracting membrane proteins and perfectly interacting proteins (a CFP-YFP fusion), the results of FRET of cells coexpressing DcuS-CFP and DcuS-YFP were quantitatively evaluated. In living cells and after reconstitution of purified recombinant DcuS in proteoliposomes, DcuS was found as a dimer or higher oligomer, independent of the presence of an effector. Chemical cross-linking with disuccinimidyl suberate showed tetrameric, in addition to dimeric, DcuS in proteoliposomes and in membranes of bacteria, whereas purified DcuS in nondenaturing detergent was mainly monomeric. The presence and amount of tetrameric DcuS in vivo and in proteoliposomes was not dependent on the concentration of DcuS. Only membrane-embedded DcuS (present in the oligomeric state) is active in (auto)phosphorylation. Overall, the FRET and cross-linking data demonstrate the presence in living cells, in bacterial membranes, and in proteoliposomes of full-length DcuS protein in an oligomeric state, including a tetramer.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Quinases/metabolismo , Proteolipídeos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Quinases/genética , Espectrometria de Fluorescência
11.
FEBS Lett ; 590(3): 349-57, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26785823

RESUMO

The Ess/Type VII protein secretion system, essential for virulence of pathogenic Staphylococcus aureus, is dependent upon the four core membrane proteins EssA, EssB, EssC and EsaA. Here, we use crosslinking and blue native PAGE analysis to show that the EssB, EssC and EsaA proteins individually form homomeric complexes. Surprisingly, these components appear unable to interact with each other, or with the EssA protein. We further show that two high molecular weight multimers of EssC detected in whole cells are not dependent upon the presence of EsxA, EsxB or any other Ess component for their assembly.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Biológicos , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas/química , Detergentes/química , Digitonina/química , Dimerização , Formaldeído/química , Deleção de Genes , Glucosídeos/química , Peso Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Octoxinol/química , Fases de Leitura Aberta , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Polímeros/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Succinimidas/química , Sistemas de Secreção Tipo VII/química , Sistemas de Secreção Tipo VII/genética
12.
Nat Microbiol ; 2: 16183, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27723728

RESUMO

The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here, we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralized during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent on a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization, and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted, whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins, most probably to protect themselves from the toxic activity of EsaD secreted by esaD+ strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that the T7SS may play unexpected and key roles in bacterial competitiveness.


Assuntos
Antibiose , Toxinas Bacterianas/metabolismo , Desoxirribonucleases/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
13.
ACS Chem Biol ; 8(11): 2518-27, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24015914

RESUMO

3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.


Assuntos
Descoberta de Drogas , Oxirredutases/metabolismo , Pseudomonas aeruginosa/enzimologia , Sítio Alostérico , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Deleção de Genes , Concentração Inibidora 50 , Conformação Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
14.
FEBS Lett ; 585(3): 478-84, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21237157

RESUMO

The twin arginine protein transport (Tat) system transports folded proteins across cytoplasmic membranes of bacteria and thylakoid membranes of plants, and in Escherichia coli it comprises TatA, TatB and TatC components. In this study we show that the membrane extrinsic domain of TatB forms parallel contacts with at least one other TatB protein. Truncation of the C-terminal two thirds of TatB still allows complex formation with TatC, although protein transport is severely compromised. We were unable to isolate transport-inactive single codon substitution mutations in tatB suggesting that the precise amino acid sequence of TatB is not critical to its function.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Códon , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/metabolismo , Via Secretória , Técnicas do Sistema de Duplo-Híbrido
15.
Nat Struct Mol Biol ; 15(10): 1031-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18820688

RESUMO

The mechanistic understanding of how membrane-embedded sensor kinases recognize signals and regulate kinase activity is currently limited. Here we report structure-function relationships of the multidomain membrane sensor kinase DcuS using solid-state NMR, structural modeling and mutagenesis. Experimental data of an individual cytoplasmic Per-Arnt-Sim (PAS) domain were compared to structural models generated in silico. These studies, together with previous NMR work on the periplasmic PAS domain, enabled structural investigations of a membrane-embedded 40-kDa construct by solid-state NMR, comprising both PAS segments and the membrane domain. Structural alterations are largely limited to protein regions close to the transmembrane segment. Data from isolated and multidomain constructs favor a disordered N-terminal helix in the cytoplasmic domain. Mutations of residues in this region strongly influence function, suggesting that protein flexibility is related to signal transduction toward the kinase domain and regulation of kinase activity.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Histidina Quinase , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
16.
J Biol Chem ; 280(21): 20596-603, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15781452

RESUMO

DcuS is a membrane-associated sensory histidine kinase of Escherichia coli specific for C(4) -dicarboxylates. The nature of the stimulus and its structural prerequisites were determined by measuring the induction of DcuS-dependent dcuB'-'lacZ gene expression. C(4)-dicarboxylates without or with substitutions at C2/C3 by hydrophilic (hydroxy, amino, or thiolate) groups stimulated gene expression in a similar way. When one carboxylate was replaced by sulfonate, methoxy, or nitro groups, only the latter (3-nitropropionate) was active. Thus, the ligand of DcuS has to carry two carboxylate or carboxylate/nitro groups 3.1-3.8 A apart from each other. The effector concentrations for half-maximal induction of dcuB'-'lacZ expression were 2-3 mm for the C(4)-dicarboxylates and 0.5 mm for 3-nitropropionate or d-tartrate. The periplasmic domain of DcuS contains a conserved cluster of positively charged or polar amino acid residues (Arg(107)-X(2)-His(110)-X(9)-Phe(120)-X(26)-Arg(147)-X-Phe(149)) that were essential for fumarate-dependent transcriptional regulation. The presence of fumarate or d-tartrate caused sharpening of peaks or chemical shift changes in HSQC NMR spectra of the isolated C(4)-dicarboylate binding domain. The amino acid residues responding to fumarate or d-tartrate were in the region comprising residues 89-150 and including the supposed binding site. DcuS(R147A) mutant with an inactivated binding site was isolated and reconstituted in liposomes. The protein showed the same (activation-independent) kinase activity as DcuS, but autophosphorylation of DcuS was no longer stimulated by C(4)-dicarboxylates. Therefore, the R147A mutation affected signal perception and transfer to the kinase but not the kinase activity per se.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Fumaratos/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Transportadores de Ácidos Dicarboxílicos/genética , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Ativação Enzimática , Proteínas de Escherichia coli/genética , Fumaratos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Histidina Quinase , Óperon Lac/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nitrocompostos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Propionatos/farmacologia , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Relação Estrutura-Atividade , Tartaratos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA