Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(9): 3784-3792, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808764

RESUMO

In their natural habitat of rotting fruit, the nematode Caenorhabditis elegans feeds on the complex bacterial communities that thrive in this rich growth medium. Hundreds of diverse bacterial strains cultured from such rotting fruit allow C. elegans growth and reproduction when tested individually. In screens for C. elegans responses to single bacterial strains associated with nematodes in fruit, we found that Rhizobium causes a genome instability phenotype; we observed abnormally long or fragmented intestinal nuclei due to aberrant nuclear division, or defective karyokinesis. The karyokinesis defects were restricted to intestinal cells and required close proximity between bacteria and the worm. A genetic screen for C. elegans mutations that cause the same intestinal karyokinesis defect followed by genome sequencing of the isolated mutant strains identified mutations that disrupt DNA damage repair pathways, suggesting that Rhizobium may cause DNA damage in C. elegans intestinal cells. We hypothesized that such DNA damage is caused by reactive oxygen species produced by Rhizobium and found that hydrogen peroxide added to benign Escherichia coli can cause the same intestinal karyokinesis defects in WT C. elegans Supporting this model, free radical scavengers suppressed the Rhizobium-induced C. elegans DNA damage. Thus, Rhizobium may signal to eukaryotic hosts via reactive oxygen species, and the host may respond with DNA damage repair pathways.


Assuntos
Caenorhabditis elegans/microbiologia , Dano ao DNA/genética , Intestinos/microbiologia , Rhizobium/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Divisão do Núcleo Celular/genética , Escherichia coli/genética , Frutas/microbiologia , Instabilidade Genômica/genética , Mutação , Rhizobium/patogenicidade
2.
Genes Dev ; 27(4): 351-4, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23431052

RESUMO

The health benefits of specific fatty acids and physiological roles of fat metabolism are important subjects that are still poorly understood. In this issue of Genes & Development, O'Rourke and colleagues (pp. 429-440) uncovered a role for lipase-generated ω-6 fatty acids in promoting autophagy and, consequently, life span extension under both fed and fasting conditions. The impact of this finding is discussed with regard to the nutritional value of ω-6 fatty acids and regulatory functions of fat metabolism beyond its well-known role in energy storage.


Assuntos
Autofagia/fisiologia , Caenorhabditis elegans/fisiologia , Ácidos Graxos Ômega-6/metabolismo , Longevidade/fisiologia , Animais , Humanos
3.
Genes Dev ; 26(6): 554-66, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426533

RESUMO

Natural fatty acids (FAs) exhibit vast structural diversity, but the functional importance of FA variations and the mechanism by which they contribute to a healthy lipid composition in animals remain largely unexplored. A large family of acyl-CoA synthetases (ACSs) regulates FA metabolism by esterifying FA to coenyzme A. However, little is known about how particular FA-ACS combinations affect lipid composition and specific cellular functions. We analyzed how the activity of ACS-1 on branched chain FA C17ISO impacts maternal lipid content, signal transduction, and development in Caenorhabditis elegans embryos. We show that expression of ACS-1 in the somatic gonad guides the incorporation of C17ISO into certain phospholipids and thus regulates the phospholipid composition in the zygote. Disrupting this ACS-1 function causes striking defects in complex membrane dynamics, including exocytosis and cytokinesis, leading to early embryonic lethality. These defects are suppressed by hyperactive IP(3) signaling, suggesting that C17ISO and ACS-1 functions are necessary for optimal IP(3) signaling essential for early embryogenesis. This study shows a novel role of branched chain FAs whose functions in humans and animals are unknown and uncovers a novel intercellular regulatory pathway linking a specific FA-ACS interaction to specific developmental events.


Assuntos
Caenorhabditis elegans/embriologia , Ácidos Graxos/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Ácidos Palmíticos/metabolismo , Fosfolipídeos/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Membrana Celular/enzimologia , Embrião não Mamífero/enzimologia , Embrião não Mamífero/ultraestrutura , Exocitose , Glicosaminoglicanos/metabolismo , Gônadas/enzimologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfolipídeos/química , RNA Interferente Pequeno/genética
4.
PLoS Biol ; 2(9): E257, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340492

RESUMO

Monomethyl branched-chain fatty acids (mmBCFAs) are commonly found in many organisms from bacteria to mammals. In humans, they have been detected in skin, brain, blood, and cancer cells. Despite a broad distribution, mmBCFAs remain exotic in eukaryotes, where their origin and physiological roles are not understood. Here we report our study of the function and regulation of mmBCFAs in Caenorhabditis elegans, combining genetics, gas chromatography, and DNA microarray analysis. We show that C. elegans synthesizes mmBCFAs de novo and utilizes the long-chain fatty acid elongation enzymes ELO-5 and ELO-6 to produce two mmBCFAs, C15ISO and C17ISO. These mmBCFAs are essential for C. elegans growth and development, as suppression of their biosynthesis results in a growth arrest at the first larval stage. The arrest is reversible and can be overcome by feeding the arrested animals with mmBCFA supplements. We show not only that the levels of C15ISO and C17ISO affect the expression of several genes, but also that the activities of some of these genes affect biosynthesis of mmBCFAs, suggesting a potential feedback regulation. One of the genes, lpd-1, encodes a homolog of a mammalian sterol regulatory element-binding protein (SREBP 1c). We present results suggesting that elo-5 and elo-6 may be transcriptional targets of LPD-1. This study exposes unexpected and crucial physiological functions of C15ISO and C17ISO in C. elegans and suggests a potentially important role for mmBCFAs in other eukaryotes.


Assuntos
Acetiltransferases/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Ácidos Graxos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Acetiltransferases/fisiologia , Alelos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Cromatografia Gasosa , Proteínas de Ligação a DNA/química , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Genes Reporter , Técnicas Genéticas , Variação Genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Modelos Químicos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores de Tempo , Fatores de Transcrição
5.
Elife ; 62017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569665

RESUMO

To survive challenging environments, animals acquired the ability to evaluate food quality in the intestine and respond to nutrient deficiencies with changes in food-response behavior, metabolism and development. However, the regulatory mechanisms underlying intestinal sensing of specific nutrients, especially micronutrients such as vitamins, and the connections to downstream physiological responses in animals remain underexplored. We have established a system to analyze the intestinal response to vitamin B2 (VB2) deficiency in Caenorhabditis elegans, and demonstrated that VB2 level critically impacts food uptake and foraging behavior by regulating specific protease gene expression and intestinal protease activity. We show that this impact is mediated by TORC1 signaling through reading the FAD-dependent ATP level. Thus, our study in live animals uncovers a VB2-sensing/response pathway that regulates food-uptake, a mechanism by which a common signaling pathway translates a specific nutrient signal into physiological activities, and the importance of gut microbiota in supplying micronutrients to animals.


Assuntos
Caenorhabditis elegans/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Peptídeo Hidrolases/metabolismo , Riboflavina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais
6.
Genetics ; 163(1): 159-69, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12586704

RESUMO

While the general steps of fatty acid (FA) biosynthesis are well understood, the individual enzymes involved in the elongation of long chain saturated and polyunsaturated FA (PUFA) are largely unknown. Recent research indicates that these enzymes might be of considerable physiological importance for human health. We use Caenorhabditis elegans to study FA elongation activities and associated abnormal phenotypes. In this article we report that the predicted C. elegans F11E6.5/ELO-2 is a functional enzyme with the FA elongation activity. It is responsible for the elongation of palmitic acid and is involved in PUFA biosynthesis. RNAi-mediated suppression of ELO-2 causes an accumulation of palmitate and an associated decrease in the PUFA fraction in triacylglycerides and phospholipid classes. This imbalance in the FA composition results in multiple phenotypic defects such as slow growth, small body size, reproductive defects, and changes in rhythmic behavior. ELO-2 cooperates with the previously reported ELO-1 in 20-carbon PUFA production, and at least one of the enzymes must function to provide normal growth and development in C. elegans. The presented data indicate that suppression of a single enzyme of the FA elongation machinery is enough to affect various organs and systems in worms. This effect resembles syndromic disorders in humans.


Assuntos
Acetiltransferases/metabolismo , Ciclos de Atividade/fisiologia , Caenorhabditis elegans/metabolismo , Ácidos Graxos/biossíntese , Acetiltransferases/genética , Ciclos de Atividade/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Elongases de Ácidos Graxos , Dados de Sequência Molecular , Família Multigênica , Ácido Palmítico/metabolismo , Interferência de RNA
7.
Dev Cell ; 33(3): 260-71, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25892013

RESUMO

Food deprivation suppresses animal growth and development but spares the systems essential for foraging. The mechanisms underlying this selective development, and potential roles of lipids in it, are unclear. When C. elegans hatch in a food-free environment, postembryonic growth and development stall, but sensory neuron differentiation and neuronal development required for food responses continue. Here, we show that monomethyl branched-chain fatty acids (mmBCFAs) and their derivative, d17iso-glucosylceramide, function in the intestine to promote foraging behavior and sensory neuron maturation through both TORC1-dependent and -independent mechanisms. We show that mmBCFAs impact the expression of a subset of genes, including ceh-36/Hox, which we show to play a key role in mediating the regulation of the neuronal functions by this lipid pathway. This study uncovers that a lipid pathway promotes neuronal functions involved in foraging under both fed and fasting conditions and adds critical insight into the physiological functions of TORC1.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/metabolismo , Diferenciação Celular/fisiologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Complexos Multiproteicos/metabolismo , Neurogênese/fisiologia , Células Receptoras Sensoriais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina
8.
PLoS One ; 8(9): e76270, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086720

RESUMO

The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs) are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromatografia Gasosa , Clonagem Molecular , Primers do DNA/genética , Testes Genéticos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Transporte Proteico/genética , Transporte Proteico/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/genética , Supressão Genética/genética
9.
Elife ; 2: e00429, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23705068

RESUMO

Regulation of animal development in response to nutritional cues is an intensely studied problem related to disease and aging. While extensive studies indicated roles of the Target of Rapamycin (TOR) in sensing certain nutrients for controlling growth and metabolism, the roles of fatty acids and lipids in TOR-involved nutrient/food responses are obscure. Caenorhabditis elegans halts postembryonic growth and development shortly after hatching in response to monomethyl branched-chain fatty acid (mmBCFA) deficiency. Here, we report that an mmBCFA-derived sphingolipid, d17iso-glucosylceramide, is a critical metabolite in regulating growth and development. Further analysis indicated that this lipid function is mediated by TORC1 and antagonized by the NPRL-2/3 complex in the intestine. Strikingly, the essential lipid function is bypassed by activating TORC1 or inhibiting NPRL-2/3. Our findings uncover a novel lipid-TORC1 signaling pathway that coordinates nutrient and metabolic status with growth and development, advancing our understanding of the physiological roles of mmBCFAs, ceramides, and TOR. DOI:http://dx.doi.org/10.7554/eLife.00429.001.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glucosilceramidas/metabolismo , Mucosa Intestinal/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Metabolismo Energético , Intestinos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Mutação , Estado Nutricional , Serina-Treonina Quinases TOR/genética
10.
Virulence ; 1(3): 113-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21178429

RESUMO

An important part of the innate immune response of the nematode C. elegans to fungal infection is the rapid induction of antimicrobial peptide gene expression. One of these genes, nlp­29, is expressed at a low level in adults under normal conditions. Its expression is up-regulated in the epidermis by infection with Drechmeria coniospora, but also by physical injury and by osmotic stress. For infection and wounding, the induction is dependent on a p38 MAP kinase cascade, but for osmotic stress, this pathway is not required. To characterize further the pathways that control the expression of nlp­29, we carried out a genetic screen for negative regulatory genes. We isolated a number of Peni (peptide expression no infection) mutants and cloned one. It corresponds to fasn­1, the nematode ortholog of vertebrate fatty acid synthase. We show here that a pathway involving fatty acid synthesis and the evolutionary conserved wnk­1 and gck­3/Ste20/GCK­VI kinases modulates nlp­29 expression in the C. elegans epidermis, independently of p38 MAPK signaling. The control of the antimicrobial peptide gene nlp­29 thus links different physiological processes, including fatty acid metabolism, osmoregulation, maintenance of epidermal integrity and the innate immune response to infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Caenorhabditis elegans/enzimologia , Epiderme/imunologia , Ácido Graxo Sintases/metabolismo , Regulação da Expressão Gênica , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Ácido Graxo Sintases/genética , Homeostase , Imunidade Inata , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Quinase 1 Deficiente de Lisina WNK , Equilíbrio Hidroeletrolítico , Proteínas Quinases p38 Ativadas por Mitógeno
11.
Genes Dev ; 22(15): 2102-10, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18676815

RESUMO

Growth and development of multicellular organisms are controlled by signaling systems that sense nutrition availability and metabolic status. We report a novel and surprising factor in Caenorhabditis elegans development, the monomethyl branched-chain fatty acid C17ISO, a product of leucine catabolism. We show here that C17ISO is an essential constituent in a novel mechanism that acts in parallel with the food-sensing DAF-2 (insulin receptor)/DAF-16 (FOXO) signaling pathway to promote post-embryonic development, and that the two pathways converge on a common target repressing cell cycle. We show that C17ISO homeostasis is regulated by a SREBP-1c-mediated feedback mechanism that is different from the SREBP-1c-mediated regulation of common fatty acid biosynthesis, as well as by peptide uptake and transport. Our data suggest that C17ISO may act as a chemical/nutritional factor in a mechanism that regulates post-embryonic development in response to the metabolic state of the organism.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Ácidos Graxos/fisiologia , Retroalimentação Fisiológica , Receptor de Insulina/metabolismo , Animais , Ácidos Graxos/biossíntese , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Modelos Biológicos , Interferência de RNA , Receptor de Insulina/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA