Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
EMBO J ; 40(2): e104559, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33372703

RESUMO

The transient elevation of cytosolic free calcium concentration ([Ca2+ ]cyt ) induced by cold stress is a well-established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+ -permeable transporter ANNEXIN1 (AtANN1) mediates cold-triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold-induced [Ca2+ ]cyt increase and upregulation of the cold-responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold-induced [Ca2+ ]cyt elevation in the ost1-3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1-AtANN1 to cold-induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Resposta ao Choque Frio/fisiologia , Membrana Celular/metabolismo , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo
2.
Plant Physiol ; 182(4): 1743-1761, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31744935

RESUMO

The second messenger calcium plays a key role in conveying specificity of signaling pathways in plant cells. Specific calcium signatures are decoded to generate correct gene expression responses and amplification of calcium signatures is vital to this process. (1) It is not known if this amplification is an intrinsic property of all calcium-regulated gene expression responses and whether all calcium signatures have the potential to be amplified, or (2) how a given calcium signature maintains specificity in cells containing a great number of transcription factors (TFs) and other proteins with the potential to be calcium-regulated. The work presented here uncovers the design principle by which it is possible to decode calcium signals into specific changes in gene transcription in plant cells. Regarding the first question, we found that the binding mechanism between protein components possesses an intrinsic property that will nonlinearly amplify any calcium signal. This nonlinear amplification allows plant cells to effectively distinguish the kinetics of different calcium signatures to produce specific and appropriate changes in gene expression. Regarding the second question, we found that the large number of calmodulin (CaM)-binding TFs or proteins in plant cells form a buffering system such that the concentration of an active CaM-binding TF is insensitive to the concentration of any other CaM-binding protein, thus maintaining specificity. The design principle revealed by this work can be used to explain how any CaM-binding TF decodes calcium signals to generate specific gene expression responses in plant cells via transcription.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Fatores de Transcrição/metabolismo , Sinalização do Cálcio/fisiologia , Ligação Proteica
3.
Plant Cell Physiol ; 60(3): 538-548, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517735

RESUMO

Plants need to sense increases in temperature to be able to adapt their physiology and development to survive; however, the mechanisms of heat perception are currently relatively poorly understood. Here we demonstrate that in response to elevated temperature, the free calcium concentration of the stroma of chloroplasts increases. This response is specific to the chloroplast, as no corresponding increase in calcium is seen in the cytosol. The chloroplast calcium response is dose dependent above a threshold. The magnitude of this calcium response is dependent upon absolute temperature, not the rate of heating. This response is dynamic: repeated stimulation leads to rapid attenuation of the response, which can be overcome by sensitization at a higher temperature. More long-term acclimation to different temperatures resets the basal sensitivity of the system, such that plants acclimated to lower temperatures are more sensitive than those acclimated to higher temperatures. The heat-induced chloroplast calcium response was partially dependent upon the calcium-sensing receptor CAS which has been shown previously to regulate other chloroplast calcium signaling responses. Taken together, our data demonstrate the ability of chloroplasts to sense absolute high temperature and produce commensurately quantitative stromal calcium response, the magnitude of which is a function of both current temperature and stress history.


Assuntos
Cálcio/metabolismo , Temperatura Alta , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Temperatura
4.
New Phytol ; 223(3): 1307-1318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980545

RESUMO

At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Temperatura Alta , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fluorescência , Fotossíntese , Estabilidade Proteica
5.
New Phytol ; 224(4): 1518-1531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31549420

RESUMO

Forward genetic screens play a key role in the identification of genes contributing to plant stress tolerance. Using a screen for freezing sensitivity, we have identified a novel freezing tolerance gene, SENSITIVE-TO-FREEZING8, in Arabidopsis thaliana. We identified SFR8 using recombination-based mapping and whole-genome sequencing. As SFR8 was predicted to have an effect on cell wall composition, we used GC-MS and polyacrylamide gel electrophoresis to measure cell-wall fucose and boron (B)-dependent dimerization of the cell-wall pectic domain rhamnogalacturonan II (RGII) in planta. After treatments to promote borate-bridging of RGII, we assessed freeze-induced damage in wild-type and sfr8 plants by measuring electrolyte leakage from freeze-thawed leaf discs. We mapped the sfr8 mutation to MUR1, a gene encoding the fucose biosynthetic enzyme GDP-d-mannose-4,6-dehydratase. sfr8 cell walls exhibited low cell-wall fucose levels and reduced RGII bridging. Freezing sensitivity of sfr8 mutants was ameliorated by B supplementation, which can restore RGII dimerization. B transport mutants with reduced RGII dimerization were also freezing-sensitive. Our research identifies a role for the structure and composition of the plant primary cell wall in determining basal plant freezing tolerance and highlights the specific importance of fucosylation, most likely through its effect on the ability of RGII pectin to dimerize.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Boro/metabolismo , Clonagem Molecular , Congelamento , Fucose/metabolismo , Mutação , Pectinas/química , Pectinas/metabolismo , Células Vegetais/metabolismo , Estresse Fisiológico/fisiologia
6.
New Phytol ; 217(4): 1598-1609, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29218709

RESUMO

Calcium plays a key role in determining the specificity of a vast array of signalling pathways in plants. Cellular calcium elevations with different characteristics (calcium signatures) carry information on the identity of the primary stimulus, ensuring appropriate downstream responses. However, the mechanism for decoding calcium signatures is unknown. To determine this, decoding of the salicylic acid (SA)-mediated plant immunity signalling network controlling gene expression was examined. A dynamic mathematical model of the SA-mediated plant immunity network was developed. This model was used to predict responses to different calcium signatures; these were validated empirically using quantitative real-time PCR to measure gene expression. The mechanism for decoding calcium signatures to control expression of plant immunity genes enhanced disease susceptibility 1 (EDS1) and isochorismate synthase 1 (ICS1) was identified. Calcium, calmodulin, calmodulin-binding transcription activators (CAMTA)3 and calmodulin binding protein 60g (CBP60g) together amplify each calcium signature into three active signals, simultaneously regulating expression. The time required for calcium to return to steady-state level also quantitatively regulates gene expression. Decoding of calcium signatures occurs via nonlinear interactions between these active signals, producing a unique response in each case. Key properties of the calcium signatures are not intuitive, exemplifying the importance of mathematical modelling approaches. This approach can be applied to identifying the decoding mechanisms of other plant calcium signalling pathways.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Sinalização do Cálcio/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intercelular , Modelos Biológicos , Peptídeos/farmacologia , Reprodutibilidade dos Testes , Venenos de Vespas/farmacologia
7.
Transgenic Res ; 27(4): 355-366, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777502

RESUMO

Plants have co-evolved with a diverse array of pathogens and insect herbivores and so have evolved an extensive repertoire of constitutive and induced defence mechanisms activated through complex signalling pathways. OXI1 kinase is required for activation of mitogen-activated protein kinases (MAPKs) and is an essential part of the signal transduction pathway linking oxidative burst signals to diverse downstream responses. Furthermore, changes in the levels of OXI1 appear to be crucial for appropriate signalling. Callose deposition also plays a key role in defence. Here we demonstrate, for the first time, that OXI1 plays an important role in defence against aphids. The Arabidopsis mutant, oxi1-2, showed significant resistance both in terms of population build-up (p < 0.001) and the rate of build-up (p < 0.001). Arabidopsis mutants for ß-1,3-glucanase, gns2 and gns3, showed partial aphid resistance, significantly delaying developmental rate, taking two-fold longer to reach adulthood. Whilst ß-1,3-glucanase genes GNS1, GNS2, GNS3 and GNS5 were not induced in oxi1-2 in response to aphid feeding, GNS2 was expressed to high levels in the corresponding WT (Col-0) in response to aphid feeding. Callose synthase GSL5 was up-regulated in oxi1-2 in response to aphids. The results suggest that resistance in oxi1-2 mutants is through induction of callose deposition via MAPKs resulting in ROS induction as an early response. Furthermore, the results suggest that the ß-1,3-glucanase genes, especially GNS2, play an important role in host plant susceptibility to aphids. Better understanding of signalling cascades underpinning tolerance to biotic stress will help inform future breeding programmes for enhancing crop resilience.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/parasitologia , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Afídeos/genética , Afídeos/patogenicidade , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tolerância a Medicamentos , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Transdução de Sinais , Ativação Transcricional
8.
Plant Cell ; 26(1): 465-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24415770

RESUMO

The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Complexo Mediador/fisiologia , RNA Polimerase II/metabolismo , Transativadores/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas e Peptídeos de Choque Frio/genética , Complexo Mediador/genética , Complexo Mediador/metabolismo , Transativadores/genética , Transativadores/metabolismo
9.
J Biol Chem ; 290(41): 24945-60, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26306038

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.


Assuntos
DNA/química , DNA/metabolismo , Leucina , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Doenças das Plantas/virologia , Estrutura Terciária de Proteína , Solanum tuberosum/imunologia , Especificidade por Substrato
10.
New Phytol ; 208(1): 174-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25917109

RESUMO

Experimental data show that Arabidopsis thaliana is able to decode different calcium signatures to produce specific gene expression responses. It is also known that calmodulin-binding transcription activators (CAMTAs) have calmodulin (CaM)-binding domains. Therefore, the gene expression responses regulated by CAMTAs respond to calcium signals. However, little is known about how different calcium signatures are decoded by CAMTAs to produce specific gene expression responses. A dynamic model of Ca(2+) -CaM-CAMTA binding and gene expression responses is developed following thermodynamic and kinetic principles. The model is parameterized using experimental data. Then it is used to analyse how different calcium signatures are decoded by CAMTAs to produce specific gene expression responses. Modelling analysis reveals that: calcium signals in the form of cytosolic calcium concentration elevations are nonlinearly amplified by binding of Ca(2+) , CaM and CAMTAs; amplification of Ca(2+) signals enables calcium signatures to be decoded to give specific CAMTA-regulated gene expression responses; gene expression responses to a calcium signature depend upon its history and accumulate all the information during the lifetime of the calcium signature. Information flow from calcium signatures to CAMTA-regulated gene expression responses has been established by combining experimental data with mathematical modelling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genes de Plantas , Transativadores/metabolismo , Arabidopsis/metabolismo , Modelos Biológicos , Família Multigênica , Transdução de Sinais
11.
J Exp Bot ; 66(22): 7061-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26320239

RESUMO

Sorghum bicolor is an important cereal crop grown on the arid and semi-arid regions of >98 different countries. These regions are such that this crop is often subjected to low water conditions, which can compromise yields. Stay-green sorghum plants are able to retain green leaf area for longer under drought conditions and as such have higher yields than their senescent counterparts. However, the molecular and physiological basis of this drought tolerance is yet to be fully understood. Here, a transcriptomic approach was used to compare gene expression between stay-green (B35) and senescent (R16) sorghum varieties. Ontological analysis of the differentially expressed transcripts identified an enrichment of genes involved with the 'response to osmotic stress' Gene Ontology (GO) category. In particular, delta1-pyrroline-5-carboxylate synthase 2 (P5CS2) was highly expressed in the stay-green line compared with the senescent line, and this high expression was correlated with higher proline levels. Comparisons of the differentially expressed genes with those that lie in known stay-green qualitative trait loci (QTLs) revealed that P5CS2 lies within the Stg1 QTL. Polymorphisms in known cis-elements were identified in the putative promoter region of P5CS2 and these could be responsible for the differences in the expression of this gene. This study provides greater insight into the stay-green trait in sorghum. This will be greatly beneficial not only to improve our understanding of drought tolerance mechanisms in sorghum, but also to facilitate the improvement of future sorghum cultivars by marker-assisted selection (MAS).


Assuntos
Prolina/biossíntese , Sorghum/genética , Envelhecimento/genética , Sequência de Bases , DNA de Plantas , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise em Microsséries , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Prolina/fisiologia , Sorghum/fisiologia
12.
BMC Genomics ; 15: 456, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916767

RESUMO

BACKGROUND: Abiotic stresses which include drought and heat are amongst the main limiting factors for plant growth and crop productivity. In the field, these stress types are rarely presented individually and plants are often subjected to a combination of stress types. Sorghum bicolor is a cereal crop which is grown in arid and semi-arid regions and is particularly well adapted to the hot and dry conditions in which it originates and is now grown as a crop. In order to better understand the mechanisms underlying combined stress tolerance in this important crop, we have used microarrays to investigate the transcriptional response of Sorghum subjected to heat and drought stresses imposed both individually and in combination. RESULTS: Microarrays consisting of 28585 gene probes identified gene expression changes equating to ~4% and 18% of genes on the chip following drought and heat stresses respectively. In response to combined stress ~20% of probes were differentially expressed. Whilst many of these transcript changes were in common with those changed in response to heat or drought alone, the levels of 2043 specific transcripts (representing 7% of all gene probes) were found to only be changed following the combined stress treatment. Ontological analysis of these 'unique' transcripts identified a potential role for specific transcription factors including MYB78 and ATAF1, chaperones including unique heat shock proteins (HSPs) and metabolic pathways including polyamine biosynthesis in the Sorghum combined stress response. CONCLUSIONS: These results show evidence for both cross-talk and specificity in the Sorghum response to combined heat and drought stress. It is clear that some aspects of the combined stress response are unique compared to those of individual stresses. A functional characterization of the genes and pathways identified here could lead to new targets for the enhancement of plant stress tolerance, which will be particularly important in the face of climate change and the increasing prevalence of these abiotic stress types.


Assuntos
Proteínas de Plantas/genética , Sorghum/genética , Fatores de Transcrição/genética , DNA de Plantas , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Sorghum/crescimento & desenvolvimento , Sorghum/fisiologia , Estresse Fisiológico
13.
Plant Cell ; 23(11): 4079-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22086087

RESUMO

Increases in intracellular calcium concentration ([Ca(2+)](c)) mediate plant responses to stress by regulating the expression of genes encoding proteins that confer tolerance. Several plant stress genes have previously been shown to be calcium-regulated, and in one case, a specific promoter motif Abscisic Acid Responsive-Element (ABRE) has been found to be regulated by calcium. A comprehensive survey of the Arabidopsis thaliana transcriptome for calcium-regulated promoter motifs was performed by measuring the expression of genes in Arabidopsis seedlings responding to three calcium elevations of different characteristics, using full genome microarray analysis. This work revealed a total of 269 genes upregulated by [Ca(2+)](c) in Arabidopsis. Bioinformatic analysis strongly indicated that at least four promoter motifs were [Ca(2+)](c)-regulated in planta. We confirmed this finding by expressing in plants chimeric gene constructs controlled exclusively by these cis-elements and by testing the necessity and sufficiency of calcium for their expression. Our data reveal that the C-Repeat/Drought-Responsive Element, Site II, and CAM box (along with the previously identified ABRE) promoter motifs are calcium-regulated. The identification of these promoter elements targeted by the second messenger intracellular calcium has implications for plant signaling in response to a variety of stimuli, including cold, drought, and biotic stress.


Assuntos
Arabidopsis/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dendrímeros , Estimulação Elétrica , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos/farmacologia , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta/genética , Venenos de Vespas/farmacologia
14.
New Phytol ; 195(4): 737-751, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22816520

RESUMO

Plant species exhibit a range of tolerances to low temperatures, and these constitute a major determinant of their geographical distribution and use as crops. When tolerance is insufficient, either chilling or freezing injuries result. A variety of mechanisms are employed to evade the ravages of extreme or sub-optimal temperatures. Many of these involve cold-responsive gene expression and require that the drop in temperature is first sensed by the plant. Despite intensive research over the last 100 yr or longer, we still cannot easily answer the question of how plants sense low temperature. Over recent years, genomic and post-genomic approaches have produced a wealth of information relating to the sequence of events leading from cold perception to appropriate and useful responses. However, there are also crucial and significant gaps in the pathways constructed from these data. We describe the literature pertaining to the current understanding of cold perception, signalling and regulation of low-temperature-responsive gene expression in higher plants, raising some of the key questions that still intrigue plant biologists today and that could be targets for future work. Our review focuses on the control of gene expression in the pathways leading from cold perception to chilling and freezing tolerance.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas/genética , Adaptação Fisiológica/genética , Ritmo Circadiano/genética , Transdução de Sinais/genética
15.
New Phytol ; 195(1): 217-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22494141

RESUMO

• Arabidopsis SENSITIVE TO FREEZING6 (SFR6) controls cold- and drought-inducible gene expression and freezing- and osmotic-stress tolerance. Its identification as a component of the MEDIATOR transcriptional co-activator complex led us to address its involvement in other transcriptional responses. • Gene expression responses to Pseudomonas syringae, ultraviolet-C (UV-C) irradiation, salicylic acid (SA) and jasmonic acid (JA) were investigated in three sfr6 mutant alleles by quantitative real-time PCR and susceptibility to UV-C irradiation and Pseudomonas infection were assessed. • sfr6 mutants were more susceptible to both Pseudomonas syringae infection and UV-C irradiation. They exhibited correspondingly weaker PR (pathogenesis-related) gene expression than wild-type Arabidopsis following these treatments or after direct application of SA, involved in response to both UV-C and Pseudomonas infection. Other genes, however, were induced normally in the mutants by these treatments. sfr6 mutants were severely defective in expression of plant defensin genes in response to JA; ectopic expression of defensin genes was provoked in wild-type but not sfr6 by overexpression of ERF5. • SFR6/MED16 controls both SA- and JA-mediated defence gene expression and is necessary for tolerance of Pseudomonas syringae infection and UV-C irradiation. It is not, however, a universal regulator of stress gene transcription and is likely to mediate transcriptional activation of specific regulons only.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transativadores/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/farmacologia , Transdução de Sinais , Transativadores/genética , Raios Ultravioleta
16.
J Exp Bot ; 63(4): 1751-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22213817

RESUMO

Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo.


Assuntos
Equorina/biossíntese , Equorina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Brassica rapa/genética , Sinalização do Cálcio , Regulação da Expressão Gênica de Plantas , Variação Genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Transdução de Sinais , Nicotiana/genética
17.
Plant Direct ; 6(4): e398, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35492684

RESUMO

Synthesized small molecules are useful as tools to investigate hormonal signaling involved in plant growth and development. They are also important as agrochemicals to promote beneficial properties of crops in the field. We describe here the synthesis and mode of action of a novel growth-promoting chemical, A1. A1 stimulates enhanced growth in both shoot and root tissues of plants, acting by increasing both dry and fresh weight. This suggests that A1 not only promotes uptake of water but also increases production of cellular material. A1 treatment of Arabidopsisleads to the degradation of DELLA growth-inhibitory proteins suggesting that A1-mediated growth promotion is dependent upon this mechanism. We performed genetic analysis to confirm this and further dissect the mechanism of A1 action upon growth in Arabidopsis. A quintuple dellamutant was insensitive to A1, confirming that the mode of action was indeed via a DELLA-dependent mechanism. The ga1-5gibberellin synthesis mutant was similarly insensitive, suggesting that to promote growth in ArabidopsisA1 requires the presence of endogenous gibberellins. This was further suggested by the observation that double mutants of GID1 gibberellin receptor genes were insensitive to A1. Taken together, our data suggest that A1 acts to enhance sensitivity to endogenous gibberellins thus leading to observed enhanced growth via DELLA degradation. A1 and related compounds will be useful to identify novel signaling components involved in plant growth and development, and as agrochemicals suitable for a wide range of crop species.

18.
Curr Biol ; 18(14): 1078-83, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18639458

RESUMO

Bacterial pathogens and symbionts must suppress or negate host innate immunity. However, pathogens release conserved oligomeric and polymeric molecules or MAMPs (Microbial Associated Molecular Patterns), which elicit host defenses [1], [2] and [3]. Extracellular polysaccharides (EPSs) are key virulence factors in plant and animal pathogenesis, but their precise function in establishing basic compatibility remains unclear [4], [5], [6] and [7]. Here, we show that EPSs suppress MAMP-induced signaling in plants through their polyanionic nature [4] and consequent ability to chelate divalent calcium ions [8]. In plants, Ca2+ ion influx to the cytosol from the apoplast (where bacteria multiply [4], [5] and [9]) is a prerequisite for activation of myriad defenses by MAMPs [10]. We show that EPSs from diverse plant and animal pathogens and symbionts bind calcium. EPS-defective mutants or pure MAMPs, such as the flagellin peptide flg22, elicit calcium influx, expression of host defense genes, and downstream resistance. Furthermore, EPSs, produced by wild-type strains or purified, suppress induced responses but do not block flg22-receptor binding in Arabidopsis cells. EPS production was confirmed in planta, and the amounts in bacterial biofilms greatly exceed those required for binding of apoplastic calcium. These data reveal a novel, fundamental role for bacterial EPS in disease establishment, encouraging novel control strategies.


Assuntos
Plantas/imunologia , Plantas/microbiologia , Polissacarídeos Bacterianos/toxicidade , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bactérias/patogenicidade , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Imunidade Inata/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas/efeitos dos fármacos , Virulência/imunologia , Xanthomonas campestris/patogenicidade
19.
New Phytol ; 191(4): 984-995, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21585388

RESUMO

The Arabidopsis protein SENSITIVE TO FREEZING-6 (AtSFR6) is required for cold- and drought-inducible expression of COLD-ON REGULATED (COR) genes and, as a consequence, AtSFR6 is essential for osmotic stress and freezing tolerance in Arabidopsis. Therefore, orthologues of AtSFR6 in crop species represent important candidate targets for future manipulation of stress tolerance. We identified and cloned a homologue of AtSFR6 from rice (Oryza sativa), OsSFR6, and confirmed its orthology in Arabidopsis. OsSFR6 was identified by homology searches, and a full-length coding region isolated using reverse transcription polymerase chain reaction (RT-PCR) from Oryza sativa cDNA. To test for orthology, OsSFR6 was expressed in an Arabidopsis sfr6 loss-of-function mutant background, and restoration of wild-type phenotypes was assessed. Searching the rice genome revealed a single homologue of AtSFR6. Cloning and sequencing the OsSFR6 coding region showed OsSFR6 to have 61.7% identity and 71.1% similarity to AtSFR6 at the predicted protein sequence level. Expression of OsSFR6 in the atsfr6 mutant background restored the wild-type visible phenotype, as well as restoring wild-type levels of COR gene expression and tolerance of osmotic and freezing stresses. OsSFR6 is an orthologue of AtSFR6, and thus a target for future manipulation to improve tolerance to osmotic and other abiotic stresses.


Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Estresse Fisiológico , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Germinação , Dados de Sequência Molecular , Oryza/metabolismo , Fenótipo , Alinhamento de Sequência
20.
New Phytol ; 190(1): 49-56, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21175636

RESUMO

The AGC protein kinase OXI1 is a key protein in plant responses to oxidative signals, and is important for two oxidative burst-mediated processes: basal resistance to microbial pathogens and root hair growth. To identify possible components of the OXI1 signalling pathway, phosphoproteomic techniques were used to detect alterations in the abundance of phosphorylated proteins and peptides in an oxi1 null mutant of Arabidopsis thaliana. The relative abundance of phosphorylated proteins was assessed either using two-dimensional gel electrophoresis and staining with the phosphoprotein stain Pro-Q Diamond or by the identification and quantification, by mass spectrometry, of stable-isotope labelled phosphopeptides. A number of proteins show altered phosphorylation in the oxi1 mutant. Five proteins, including a putative F-box and 3-phosphoinositide-dependent kinase 1, show reduced phosphorylation in the oxi1 mutant, and may be direct or indirect targets of OXI1. Four proteins, including ethylene insensitive 2 and phospholipase d-gamma, show increased phosphorylation in the oxi1 mutant. This study has identified a range of candidate proteins from the OXI1 signalling pathway. The diverse activities of these proteins, including protein degradation and hormone signalling, may suggest crosstalk between OXI1 and other signal transduction cascades.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Marcação por Isótopo , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA