Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2401625121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507449

RESUMO

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.


Assuntos
Actinas , Miosina Tipo V , Actinas/química , Miosinas/química , Citoesqueleto de Actina/química , Movimento (Física) , Miosina Tipo V/química
2.
Nature ; 588(7838): 515-520, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268888

RESUMO

Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, 'shutdown' state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations.


Assuntos
Microscopia Crioeletrônica , Miosina Tipo II/química , Miosina Tipo II/ultraestrutura , Animais , Ativação Enzimática , Estabilidade Enzimática , Modelos Moleculares , Músculo Liso/química , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/ultraestrutura , Miosina Tipo II/metabolismo , Fosforilação , Domínios Proteicos , Perus
3.
Nat Rev Mol Cell Biol ; 14(11): 713-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064538

RESUMO

Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement.


Assuntos
Dineínas/metabolismo , Animais , Dineínas/química , Humanos , Modelos Biológicos
4.
Cell ; 136(3): 485-95, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203583

RESUMO

Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged and truncated Dictyostelium cytoplasmic dynein constructs, we show that the heart of the motor is a hexameric ring of AAA+ modules, with the stalk emerging opposite the primary ATPase site (AAA1). The C-terminal region is not an integral part of the ring but spans between AAA6 and near the stalk base. The N-terminal region includes a lever-like linker whose N terminus swings by approximately 17 nm during the ATPase cycle between AAA2 and the stalk base. Together with evidence of stalk tilting, which may communicate changes in microtubule binding affinity, these findings suggest a model for dynein's structure and mechanism.


Assuntos
Dictyostelium/ultraestrutura , Dineínas/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Dictyostelium/metabolismo , Dineínas/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica , Proteínas de Protozoários/ultraestrutura
5.
Nature ; 623(7988): 703-704, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914878
6.
J Biol Chem ; 290(35): 21460-72, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26175154

RESUMO

The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Microtúbulos/metabolismo , Mitose , Sequência de Aminoácidos , Animais , Aurora Quinase B/metabolismo , Linhagem Celular , Proliferação de Células , Galinhas , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação , Fosforilação , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
7.
J Biol Chem ; 289(40): 27825-35, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25122759

RESUMO

Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.


Assuntos
Miosinas/química , Animais , Bovinos , Dicroísmo Circular , Microscopia de Força Atômica , Modelos Moleculares , Miosinas/genética , Miosinas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Biochem Soc Trans ; 43(1): 58-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619246

RESUMO

The human genome contains 39 myosin genes, divided up into 12 different classes. The structure, cellular function and biochemical properties of many of these isoforms remain poorly characterized and there is still some controversy as to whether some myosin isoforms are monomers or dimers. Myosin isoforms 6 and 10 contain a stable single α-helical (SAH) domain, situated just after the canonical lever. The SAH domain is stiff enough to be able to lengthen the lever allowing the myosin to take a larger step. In addition, atomic force microscopy and atomistic simulations show that SAH domains unfold at relatively low forces and have a high propensity to refold. These properties are likely to be important for protein function, enabling motors to carry cargo in dense actin networks, and other proteins to remain attached to binding partners in the crowded cell.


Assuntos
Miosinas/química , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Miosinas/fisiologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
9.
Hum Mutat ; 35(2): 236-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24186861

RESUMO

MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD.


Assuntos
Catarata/genética , Estudos de Associação Genética , Perda Auditiva Neurossensorial/genética , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Trombocitopenia/congênito , Adulto , Idade de Início , Substituição de Aminoácidos , Feminino , Genótipo , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Itália , Modelos Lineares , Masculino , Mutação , Fenótipo , Fatores de Risco , Trombocitopenia/complicações , Trombocitopenia/diagnóstico , Trombocitopenia/genética
10.
J Biol Chem ; 288(44): 31952-62, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047955

RESUMO

It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301-1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Doenças Genéticas Inatas/enzimologia , Mutação de Sentido Incorreto , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/enzimologia , Substituição de Aminoácidos , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Estrutura Secundária de Proteína , Ratos , Sarcômeros/patologia
11.
J Biol Chem ; 288(13): 9532-48, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23382379

RESUMO

The Mus musculus myosin-18A gene is expressed as two alternatively spliced isoforms, α and ß, with reported roles in Golgi localization, in maintenance of cytoskeleton, and as receptors for immunological surfactant proteins. Both myosin-18A isoforms feature a myosin motor domain, a single predicted IQ motif, and a long coiled-coil reminiscent of myosin-2. The myosin-18Aα isoform, additionally, has an N-terminal PDZ domain. Recombinant heavy meromyosin- and subfragment-1 (S1)-like constructs for both myosin-18Aα and -18ß species were purified from the baculovirus/Sf9 cell expression system. These constructs bound both essential and regulatory light chains, indicating an additional noncanonical light chain binding site in the neck. Myosin-18Aα-S1 and -18Aß-S1 molecules bound actin weakly with Kd values of 4.9 and 54 µm, respectively. The actin binding data could be modeled by assuming an equilibrium between two myosin conformations, a competent and an incompetent form to bind actin. Actin binding was unchanged by presence of nucleotide. Both myosin-18A isoforms bound N-methylanthraniloyl-nucleotides, but the rate of ATP hydrolysis was very slow (<0.002 s(-1)) and not significantly enhanced by actin. Phosphorylation of the regulatory light chain had no effect on ATP hydrolysis, and neither did the addition of tropomyosin or of GOLPH3, a myosin-18A binding partner. Electron microscopy of myosin-18A-S1 showed that the lever is strongly angled with respect to the long axis of the motor domain, suggesting a pre-power stroke conformation regardless of the presence of ATP. These data lead us to conclude that myosin-18A does not operate as a traditional molecular motor in cells.


Assuntos
Miosinas/química , Actinas/metabolismo , Trifosfato de Adenosina/química , Animais , Baculoviridae/metabolismo , Movimento Celular , Clonagem Molecular , Humanos , Hidrólise , Cinética , Luz , Camundongos , Microscopia Eletrônica/métodos , Modelos Moleculares , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Coelhos , Tropomiosina/química
13.
Proc Natl Acad Sci U S A ; 107(15): 6799-804, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20351242

RESUMO

The powerstroke of the myosin motor is the basis of cell division and bodily movement, but has eluded empirical description due to the short lifetime and low abundance of intermediates during force generation. To gain insight into this process, we used well-established single-tryptophan and pyrene fluorescent sensors and electron microscopy to characterize the structural and kinetic properties of myosin complexed with ADP and blebbistatin, a widely used inhibitor. We found that blebbistatin does not weaken the tight actin binding of myosin.ADP, but unexpectedly it induces lever priming, a process for which the gamma-phosphate of ATP (or its analog) had been thought necessary. The results indicate that a significant fraction of the myosin.ADP.blebbistatin complex populates a previously inaccessible conformation of myosin resembling the start of the powerstroke.


Assuntos
Difosfato de Adenosina/química , Dictyostelium/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Miosinas/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Corantes Fluorescentes/química , Cinética , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Conformação Molecular , Conformação Proteica , Coelhos
14.
Proc Natl Acad Sci U S A ; 107(6): 2509-14, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133809

RESUMO

Using electron microscopy and image processing, we have observed myosin 5a modified with lever arms of different lengths (four, six, and eight calmodulin-binding IQ domains) and orientations walking along actin filaments. Step lengths were dependent on lever length: 8IQ > 6IQ > 4IQ, which is consistent with myosin 5a having evolved to walk straight along actin. Lead heads were mostly in the prepowerstroke state, tethered there by the trail head. However, improved image processing showed that in 5-10% of molecules the lead motor was in the postpowerstroke state. This is a unique attached state of myosin, where the motor domain has completed its powerstroke at the expense of severe lever distortion, but with little cargo movement. Postpowerstroke lead heads were seen in both wild-type and modified lever molecules, mostly where there was least strain. These data allow the strain dependence of the equilibrium between pre- and postpowerstroke conformations to be measured. Slow rates of ADP dissociation observed from lead heads of these molecules can be explained by the unfavorable equilibrium between the pre- and postpowerstroke conformations preceding ADP loss.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Microscopia Eletrônica/métodos , Miosina Tipo V/metabolismo , Miosina Tipo V/ultraestrutura , Citoesqueleto de Actina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Etilmaleimida/farmacologia , Cinética , Camundongos , Modelos Moleculares , Mutação , Miosina Tipo V/genética , Ligação Proteica/efeitos dos fármacos , Spodoptera
15.
bioRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37503193

RESUMO

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track. By contrast to the majority of macroscopic machines, they need to navigate a chaotic cellular environment, potential disorder in the track and Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering (iSCAT) microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably-spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.

16.
Nature ; 442(7099): 212-5, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16838021

RESUMO

Myosin 5 is a two-headed motor protein that moves cargoes along actin filaments. Its tail ends in paired globular tail domains (GTDs) thought to bind cargo. At nanomolar calcium levels, actin-activated ATPase is low and the molecule is folded. Micromolar calcium concentrations activate ATPase and the molecule unfolds. Here we describe the structure of folded myosin and the GTD's role in regulating activity. Electron microscopy shows that the two heads lie either side of the tail, contacting the GTDs at a lobe of the motor domain (approximately Pro 117-Pro 137) that contains conserved acidic side chains, suggesting ionic interactions between motor domain and GTD. Myosin 5 heavy meromyosin, a constitutively active fragment lacking the GTDs, is inhibited and folded by a dimeric GST-GTD fusion protein. Motility assays reveal that at nanomolar calcium levels heavy meromyosin moves robustly on actin filaments whereas few myosins bind or move. These results combine to show that with no cargo, the GTDs bind in an intramolecular manner to the motor domains, producing an inhibited and compact structure that binds weakly to actin and allows the molecule to recycle towards new cargoes.


Assuntos
Miosina Tipo V/química , Miosina Tipo V/metabolismo , Actinas/química , Actinas/metabolismo , Sítios de Ligação , Microscopia Eletrônica , Modelos Moleculares , Miosina Tipo V/ultraestrutura , Dobramento de Proteína , Estrutura Terciária de Proteína
17.
Proc Natl Acad Sci U S A ; 106(11): 4189-94, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19255446

RESUMO

Full-length Drosophila myosin 7a (myosin 7a-FL) has a complex tail containing a short predicted coiled coil followed by a MyTH4-FERM domain, an SH3 domain, and a C-terminal MyTH4-FERM domain. Myosin 7a-FL expressed in Sf9 cells is monomeric despite the predicted coiled coil. We showed previously that Subfragment-1 (S1) from this myosin has MgATPase of V(max) approximately 1 s(-1) and K(ATPase) approximately 1 microM actin. We find that myosin 7a-FL has V(max) similar to S1 but K(ATPase) approximately 30 microM. Thus, at low actin concentrations (5 microM), the MgATPase of S1 is fully activated, whereas that of myosin 7a-FL is low, suggesting that the tail regulates activity. Electron microscopy of myosin 7a-FL with ATP shows the tail is tightly bent back against the motor domain. Myosin 7a-FL extends at either high ionic strength or without ATP, revealing the motor domain, lever, and tail. A series of C-terminal truncations show that deletion of 99 aa (the MyTH7 subdomain of the C-terminal FERM domain) is sufficient to abolish bending, and the K(ATPase) is then similar to S1. This region is highly conserved in myosin 7a. We found that a double mutation in it, R2140A-K2143A, abolishes bending and reduces K(ATPase) to S1 levels. In addition, the expressed C-terminal FERM domain binds actin with K(d) approximately 30 microM regardless of ATP, similar to the K(ATPase) value for myosin 7a-FL. We propose that at low cellular actin concentrations, myosin 7a-FL is bent and inactive, but at high actin concentrations, it is unfolded and active because the C-terminal FERM domain binds to actin.


Assuntos
Miosinas/metabolismo , Actinas/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Proteínas de Drosophila , Insetos , Cinética , Miosina VIIa , Miosinas/química , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Estrutura Terciária de Proteína , Transdução Genética
18.
Proc Natl Acad Sci U S A ; 106(52): 22193-8, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20018767

RESUMO

Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins.


Assuntos
Miosinas/química , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Recombinante/genética , Técnicas In Vitro , Camundongos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/ultraestrutura , Miosina Tipo V/química , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosina Tipo V/ultraestrutura , Miosinas/genética , Miosinas/metabolismo , Miosinas/ultraestrutura , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 105(16): 6022-6, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18413616

RESUMO

The myosin 2 family of molecular motors includes isoforms regulated in different ways. Vertebrate smooth-muscle myosin is activated by phosphorylation of the regulatory light chain, whereas scallop striated adductor-muscle myosin is activated by direct calcium binding to its essential light chain. The paired heads of inhibited molecules from myosins regulated by phosphorylation have an asymmetric arrangement with motor-motor interactions. It was unknown whether such interactions were a common motif for inactivation used in other forms of myosin-linked regulation. Using electron microscopy and single-particle image processing, we show that indistinguishable structures are indeed found in myosins and heavy meromyosins isolated from scallop striated adductor muscle and turkey gizzard smooth muscle. The similarities extend beyond the shapes of the heads and interactions between them: In both myosins, the tail folds into three segments, apparently at identical sites; all three segments are in close association outside the head region; and two segments are associated in the same way with one head in the asymmetric arrangement. Thus, these organisms, which have different regulatory mechanisms and diverged from a common ancestor >600 Myr ago, have the same quaternary structure. Conservation across such a large evolutionary distance suggests that this conformation is of fundamental functional importance.


Assuntos
Evolução Molecular , Miosina Tipo II/química , Pecten , Estrutura Quaternária de Proteína , Perus , Animais , Microscopia Eletrônica , Músculo Liso/ultraestrutura , Músculo Estriado/ultraestrutura , Miosina Tipo II/antagonistas & inibidores , Dobramento de Proteína
20.
J Cell Biol ; 159(6): 983-91, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12499355

RESUMO

We have used electron microscopy and single-particle image processing to study head conformation in myosin V molecules. We find that in the presence of ATP, many heads have a sharply angled conformation that is rare in its absence. The sharply angled conformation is similar to a myosin II atomic structure proposed to mimic the prepower stroke state. The leading head in molecules attached to actin by both heads has a similar conformation, but is also sharply angled in a second plane by tethering through the trail head. The lead head lever joins the motor domain approximately 5 nm axially from where it joins the trail motor. These positions locate the converter subdomain and show the lead motor is in the prepower stroke conformation. Tethering by the trail head places the lead head motor domain at the correct axial position along the actin for binding, but at the wrong orientation. Attachment is achieved either by bending the lead head lever throughout its length or at the pliant point. The microscopy shows that most of the walking stride is produced by changes in lever angle brought about by converter movement, but is augmented by distortion produced by thermal energy.


Assuntos
Miosina Tipo V/química , Actinas/química , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Temperatura Alta , Hidrólise , Insetos , Camundongos , Microscopia Eletrônica , Modelos Moleculares , Miosina Tipo II/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA