Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 579(7800): 603-608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132710

RESUMO

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Assuntos
Acetaldeído/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , Reparo do DNA , Replicação do DNA/fisiologia , DNA/química , Etanol/química , Anemia de Fanconi/metabolismo , Animais , Cisplatino/química , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Etanol/farmacologia , Mutagênese/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
2.
Nucleic Acids Res ; 51(8): 3770-3792, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36942484

RESUMO

During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Cromatina/genética , Replicação do DNA , DNA/genética
3.
J Am Chem Soc ; 145(2): 953-959, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36584283

RESUMO

DNA interstrand cross-links (ICLs) prevent DNA replication and transcription and can lead to potentially lethal events, such as cancer or bone marrow failure. ICLs are typically repaired by proteins within the Fanconi Anemia (FA) pathway, although the details of the pathway are not fully established. Methods to generate DNA containing ICLs are key to furthering the understanding of DNA cross-link repair. A major route to ICL formation in vivo involves reaction of DNA with acetaldehyde, derived from ethanol metabolism. This reaction forms a three-carbon bridged ICL involving the amino groups of adjacent guanines in opposite strands of a duplex resulting in amino and imino functionalities. A stable reduced form of the ICL has applications in understanding the recognition and repair of these types of adducts. Previous routes to creating DNA duplexes containing these adducts have involved lengthy post-DNA synthesis chemistry followed by reduction of the imine. Here, an efficient and high-yielding approach to the reduced ICL using a novel N2-((R)-4-trifluoroacetamidobutan-2-yl)-2'-deoxyguanosine phosphoramidite is described. Following standard automated DNA synthesis and deprotection, the ICL is formed overnight in over 90% yield upon incubation at room temperature with a complementary oligodeoxyribonucleotide containing 2-fluoro-2'-deoxyinosine. The cross-linked duplex displayed a melting transition 25 °C higher than control sequences. Importantly, we show using the Xenopus egg extract system that an ICL synthesized by this method is repaired by the FA pathway. The simplicity and efficiency of this methodology for preparing reduced acetaldehyde ICLs will facilitate access to these DNA architectures for future studies on cross-link repair.


Assuntos
Acetaldeído , DNA , Reagentes de Ligações Cruzadas , DNA/metabolismo , Replicação do DNA , Reparo do DNA , Dano ao DNA
4.
Cell ; 134(6): 969-80, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805090

RESUMO

DNA interstrand crosslinks (ICLs) are toxic DNA lesions whose repair occurs in the S phase of metazoans via an unknown mechanism. Here, we describe a cell-free system based on Xenopus egg extracts that supports ICL repair. During DNA replication of a plasmid containing a site-specific ICL, two replication forks converge on the crosslink. Subsequent lesion bypass involves advance of a nascent leading strand to within one nucleotide of the ICL, followed by incisions, translesion DNA synthesis, and extension of the nascent strand beyond the lesion. Immunodepletion experiments suggest that extension requires DNA polymerase zeta. Ultimately, a significant portion of the input DNA is fully repaired, but not if DNA replication is blocked. Our experiments establish a mechanism for ICL repair that reveals how this process is coupled to DNA replication.


Assuntos
Reparo do DNA , Replicação do DNA , Animais , Sistema Livre de Células , DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Xenopus
5.
Mol Cell ; 54(3): 460-71, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24726325

RESUMO

DNA interstrand crosslinks (ICLs), highly toxic lesions that covalently link the Watson and Crick strands of the double helix, are repaired by a complex, replication-coupled pathway in higher eukaryotes. The earliest DNA processing event in ICL repair is the incision of parental DNA on either side of the ICL ("unhooking"), which allows lesion bypass. Incisions depend critically on the Fanconi anemia pathway, whose activation involves ubiquitylation of the FANCD2 protein. Using Xenopus egg extracts, which support replication-coupled ICL repair, we show that the 3' flap endonuclease XPF-ERCC1 cooperates with SLX4/FANCP to carry out the unhooking incisions. Efficient recruitment of XPF-ERCC1 and SLX4 to the ICL depends on FANCD2 and its ubiquitylation. These data help define the molecular mechanism by which the Fanconi anemia pathway promotes a key event in replication-coupled ICL repair.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Recombinases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Clivagem do DNA , Dano ao DNA , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases , Endonucleases/química , Exodesoxirribonucleases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Humanos , Cinética , Enzimas Multifuncionais , Ligação Proteica , Recombinases/química , Ubiquitinação , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis
6.
Nucleic Acids Res ; 48(5): 2442-2456, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31960047

RESUMO

The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability and DNA interstrand crosslink (ICL) repair in vertebrates. We show that ectopic production of HSF2BP, a BRCA2-interacting protein required for meiotic HR during mouse spermatogenesis, in non-germline human cells acutely sensitize them to ICL-inducing agents (mitomycin C and cisplatin) and PARP inhibitors, resulting in a phenotype characteristic of cells from Fanconi anemia (FA) patients. We biochemically recapitulate the suppression of ICL repair and establish that excess HSF2BP compromises HR by triggering the removal of BRCA2 from the ICL site and thereby preventing the loading of RAD51. This establishes ectopic expression of a wild-type meiotic protein in the absence of any other protein-coding mutations as a new mechanism that can lead to an FA-like cellular phenotype. Naturally occurring elevated production of HSF2BP in tumors may be a source of cancer-promoting genomic instability and also a targetable vulnerability.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Proteínas de Choque Térmico/metabolismo , Recombinação Homóloga , Animais , Proteína BRCA2/metabolismo , Linhagem Celular , Dano ao DNA , Anemia de Fanconi/genética , Humanos , Camundongos , Ligação Proteica , Proteólise , Rad51 Recombinase/metabolismo , Xenopus
7.
EMBO J ; 36(14): 2034-2046, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28292785

RESUMO

XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition.


Assuntos
Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Animais , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Xenopus
8.
Nucleic Acids Res ; 47(5): 2377-2388, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30576517

RESUMO

A key step in the Fanconi anemia pathway of DNA interstrand crosslink (ICL) repair is the ICL unhooking by dual endonucleolytic incisions. SLX4/FANCP is a large scaffold protein that plays a central role in ICL unhooking. It contains multiple domains that interact with many proteins including three different endonucleases and also acts in several other DNA repair pathways. While it is known that its interaction with the endonuclease XPF-ERCC1 is required for its function in ICL repair, which other domains act in this process is unclear. Here, we used Xenopus egg extracts to determine ICL repair specific features of SLX4. We show that the SLX4-interacting endonuclease SLX1 is not required for ICL repair and demonstrate that all essential SLX4 domains are located at the N-terminal half of the protein. The MLR domain is crucial for the recruitment of XPF-ERCC1 but also has an unanticipated function in recruiting SLX4 to the site of damage. Although we find the BTB is not essential for ICL repair in our system, dimerization of SLX4 could be important. Our data provide new insights into the mechanism by which SLX4 acts in ICL repair.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Recombinases/genética , Animais , DNA/genética , Replicação do DNA/genética , Endonucleases/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Humanos , Xenopus laevis/genética
9.
Dev Biol ; 428(2): 300-309, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28427716

RESUMO

DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.


Assuntos
Dano ao DNA , Óvulo/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Animais , Fracionamento Celular , Reparo do DNA , Replicação do DNA , Feminino , Genoma , Modelos Genéticos , Transdução de Sinais
10.
EMBO J ; 33(21): 2521-33, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25193968

RESUMO

Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ(-/-) cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , DNA/biossíntese , Quadruplex G , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , Deleção de Genes , Humanos , Xenopus laevis
12.
Mol Cell ; 31(3): 371-82, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18691969

RESUMO

Posttranslational modification with small ubiquitin-related modifier, SUMO, is a widespread mechanism for rapid and reversible changes in protein function. Considering the large number of known targets, the number of enzymes involved in modification seems surprisingly low: a single E1, a single E2, and a few distinct E3 ligases. Here we show that autosumoylation of the mammalian E2-conjugating enzyme Ubc9 at Lys14 regulates target discrimination. While not altering its activity toward HDAC4, E2-25K, PML, or TDG, sumoylation of Ubc9 impairs its activity on RanGAP1 and strongly activates sumoylation of the transcriptional regulator Sp100. Enhancement depends on a SUMO-interacting motif (SIM) in Sp100 that creates an additional interface with the SUMO conjugated to the E2, a mechanism distinct from Ubc9 approximately SUMO thioester recruitment. The crystal structure of sumoylated Ubc9 demonstrates how the newly created binding interface can provide a gain in affinity otherwise provided by E3 ligases.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Autoantígenos/metabolismo , Cristalografia por Raios X , Ésteres/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/química
13.
Nat Genet ; 32(1): 153-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12185366

RESUMO

Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.


Assuntos
Transformação Celular Neoplásica , Linfoma/genética , Retroviridae/genética , Transdução de Sinais , Animais , Transformação Celular Neoplásica/genética , Genes myc , Linfoma/fisiopatologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-pim-1 , Provírus/genética , Integração Viral
14.
DNA Repair (Amst) ; 130: 103552, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572578

RESUMO

Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.


Assuntos
Quadruplex G , Replicação do DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Reguladoras de Ácido Nucleico
15.
Sci Adv ; 9(43): eadi7352, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889963

RESUMO

In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.


Assuntos
Recombinação Homóloga , Rad51 Recombinase , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Dano ao DNA
16.
Nat Commun ; 14(1): 6316, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813838

RESUMO

Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Quinase 2 Dependente de Ciclina/metabolismo
17.
Nature ; 439(7076): 625-8, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452984

RESUMO

Epac proteins (exchange proteins directly activated by cAMP) are guanine-nucleotide-exchange factors (GEFs) for the small GTP-binding proteins Rap1 and Rap2 that are directly regulated by the second messenger cyclic AMP and function in the control of diverse cellular processes, including cell adhesion and insulin secretion. Here we report the three-dimensional structure of full-length Epac2, a 110-kDa protein that contains an amino-terminal regulatory region with two cyclic-nucleotide-binding domains and a carboxy-terminal catalytic region. The structure was solved in the absence of cAMP and shows the auto-inhibited state of Epac. The regulatory region is positioned with respect to the catalytic region by a rigid, tripartite beta-sheet-like structure we refer to as the 'switchboard' and an ionic interaction we call the 'ionic latch'. As a consequence of this arrangement, the access of Rap to the catalytic site is sterically blocked. Mutational analysis suggests a model for cAMP-induced Epac activation with rigid body movement of the regulatory region, the features of which are universally conserved in cAMP-regulated proteins.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/química , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Domínio Catalítico , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Proteínas rap de Ligação ao GTP/metabolismo
18.
Nat Commun ; 13(1): 6722, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344511

RESUMO

Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Troca de Cromátide Irmã , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sítios Frágeis do Cromossomo , Recombinação Homóloga/genética , DNA
19.
Sci Adv ; 7(39): eabf8653, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559566

RESUMO

G-quadruplex (or G4) structures form in guanine-rich DNA sequences and threaten genome stability when not properly resolved. G4 unwinding occurs during S phase via an unknown mechanism. Using Xenopus egg extracts, we define a three-step G4 unwinding mechanism that acts during DNA replication. First, the replicative helicase composed of Cdc45, MCM2-7 and GINS (CMG) stalls at a leading strand G4 structure. Second, the DEAH-box helicase 36 (DHX36) mediates bypass of the CMG past the intact G4 structure, allowing approach of the leading strand to the G4. Third, G4 structure unwinding by the Fanconi anemia complementation group J helicase (FANCJ) enables DNA polymerase to synthesize past the G4 motif. A G4 on the lagging strand template does not stall CMG but still requires DNA replication for unwinding. DHX36 and FANCJ have partially redundant roles, conferring pathway robustness. This previously unknown genome maintenance pathway promotes faithful G4 replication, thereby avoiding genome instability.


Assuntos
Anemia de Fanconi , Quadruplex G , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Instabilidade Genômica , Humanos , Fase S
20.
Nat Struct Mol Biol ; 12(3): 264-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723079

RESUMO

Post-translational modification with small ubiquitin-related modifier (SUMO) alters the function of many proteins, but the molecular mechanisms and consequences of this modification are still poorly defined. During a screen for novel SUMO1 targets, we identified the ubiquitin-conjugating enzyme E2-25K (Hip2). SUMO attachment severely impairs E2-25K ubiquitin thioester and unanchored ubiquitin chain formation in vitro. Crystal structures of E2-25K(1-155) and of the E2-25K(1-155)-SUMO conjugate (E2-25K(*)SUMO) indicate that SUMO attachment interferes with E1 interaction through its location on the N-terminal helix. The SUMO acceptor site in E2-25K, Lys14, does not conform to the consensus site found in most SUMO targets (PsiKXE), and functions only in the context of an alpha-helix. In contrast, adjacent SUMO consensus sites are modified only when in unstructured peptides. The demonstration that secondary structure elements are part of SUMO attachment signals could contribute to a better prediction of SUMO targets.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Proteína SUMO-1/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Sequência Consenso , Cristalização , Células HeLa , Humanos , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Proteína SUMO-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA