Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

2.
Chemphyschem ; 24(23): e202300231, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706589

RESUMO

NiOx films on Si(111) were put in contact with oxygen at elevated temperatures. During heating and cooling in oxygen atmosphere Near Ambient Pressure (NAP)-XPS and -XAS and work function (WF) measurements reveal the creation and replenishing of oxygen vacancies in dependence of temperature. Oxygen vacancies manifest themselves as a distinct O1s feature at 528.9 eV on the low binding energy side of the main NiO peak as well as by a distinct deviation of the Ni2p3/2 spectral features from the typical NiO spectra. DFT calculations reveal that the presence of oxygen vacancies leads to a charge redistribution and altered bond lengths of the atoms surrounding the vacancies causing the observed spectral changes. Furthermore, we observed that a broadening of the lowest energy peak in the O K-edge spectra can be attributed to oxygen vacancies. In the presence of oxygen vacancies, the WF is lowered by 0.1 eV.

3.
Phys Chem Chem Phys ; 25(37): 25552-25565, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37718648

RESUMO

NiOx films grown from 50 nm thick Ni on Si(111) were put in contact with oxygen and subsequently water vapor at elevated temperatures. Near ambient pressure (NAP)-XPS and -XAS reveal the formation of oxygen vacancies at elevated temperatures, followed by H2O dissociation and saturation of the oxygen vacancies with chemisorbing OH. Through repeated heating and cooling, OH-saturated oxygen vacancies act as precursors for the formation of thermally stable NiOOH on the sample surface. This is accompanied by a significant restructuring of the surface which increases the probability of NiOOH formation. Exposure of a thin NiOx film to H2O can lead to a partial reduction of NiOx to metallic Ni accompanied by a distinct shift of the NiOx spectra with respect to the Fermi edge. DFT calculations show that the formation of oxygen vacancies and subsequently Ni0 leads to a state within the band gap of NiO which pins the Fermi edge.

4.
Faraday Discuss ; 236(0): 126-140, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543225

RESUMO

The electrocatalytic conversion of CO2 to fuels and chemicals using renewable energy is a key decarbonization technology. From a technological viewpoint, the realization of such process in the gas phase and at room temperature is considered advantageous as it allows one to circumvent the limited CO2 solubility in liquid electrolytes and CO2 transport across the electrical double layer. Yet, electrocatalysts' performances reported so far are promising but not satisfactory. To inform the design of new materials, in this study, we apply ambient pressure X-ray photoelectron and absorption spectroscopies coupled with on-line gas detection via mass spectrometry to investigate in situ performance and interface chemistry of an electrodeposited Cu on graphitic carbon support under conditions of CO2 reduction. We use the ISISS beamline at the synchrotron facility BESSY II of the HZB and the electrochemical cell based on polymeric electrolyte membrane previously developed. We show that under cathodic potential in which methanol is formed, a fraction of the electrode with a predominantly Cu(I) electronic structure undergoes reduction to metallic Cu. The C speciation is characterized by C-O and sp3 CH3 species whereas no atomic C was formed under this condition. We also show the important role of water in the formation of methanol from accumulated surface CH3 species.

5.
Faraday Discuss ; 236(0): 103-125, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485389

RESUMO

Photoelectron spectroscopy offers detailed information about the electronic structure and chemical composition of surfaces, owing to the short distance that the photoelectrons can escape from a dense medium. Unfortunately, photoelectron based spectroscopies are not directly compatible with the liquids required to investigate electrochemical processes, especially in the soft X-ray regime. To overcome this issue, different approaches based on photoelectron spectroscopy have been developed in our group over the last few years. The performance and the degree of information provided by these approaches are compared with those of the well established bulk sensitive spectroscopic approach of total fluorescence yield detection, where the surface information gained from this approach is enhanced using samples with large surface to bulk ratios. The operation of these approaches is exemplified and compared using the oxygen evolution reaction on IrOx catalysts. We found that all the approaches, if properly applied, provide similar information about surface oxygen speciation. However, using resonant photoemission spectroscopy, we were able to prove that speciation is more involved and complex than previously thought during the oxygen evolution reaction on IrOx based electrocatalysts. We found that the electrified solid-liquid interface is composed of different oxygen species, where the terminal oxygen atoms on iridium are the active species, yielding the formation of peroxo species and, finally, dioxygen as the reaction product. Thus, the oxygen-oxygen bond formation is dominated by peroxo species formation along the reaction pathway. Furthermore, the methodologies discussed here open up opportunities to investigate electrified solid-liquid interfaces in a multitude of electrochemical processes with unprecedented speciation capabilities, which are not accessible by one-dimensional X-ray spectroscopies.

6.
Phys Chem Chem Phys ; 24(15): 8832-8838, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353099

RESUMO

Adsorbed hydroxyl is a key intermediate present in many catalytic reactions and electrochemical processes. In particular, hydroxyl adsorbed on noble metal surfaces has attracted attention due to its role in water-gas shift, selective oxidation of hydrocarbons and water splitting. In this work, from a well-defined oxygen covered Ag(110) surface with O-p(2 × 1) reconstruction, we prepared a fully hydroxylated surface phase in equilibrium with water and oxygen in the gas phase under near ambient conditions. In situ soft X-ray spectroscopy combined with density functional theory revealed distinctive modifications in the electronic structure of the adsorbate layer upon hydroxylation. We show that both the core and valence electronic states of OH adsorbates have higher binding energies relative to the Fermi level than the states for the O adsorbate. The OH orbitals interact with the d band of Ag giving rise to hybridized orbitals with bonding and anti-bonding symmetry, with larger energy splitting than the oxygen adsorbate.

8.
J Am Chem Soc ; 143(32): 12524-12534, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355571

RESUMO

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (µ1-O and µ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (µ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a µ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.

9.
Chemistry ; 27(68): 17127-17144, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633707

RESUMO

Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.

10.
Phys Chem Chem Phys ; 23(38): 21591-21598, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34557885

RESUMO

The electrochemical promotion of the C2H4 + O2 total oxidation reaction over a Pt catalyst, interfaced to yttrium stabilized zirconia (YSZ), has been studied at 0.25 mbar and T = 650 K using near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) as an in situ method. The electrochemical promoter effect is linked to the presence of a several layers thick graphitic overlayer that forms on the Pt surface in the presence of C2H4. Our NAP-XPS investigation reveals that electrochemical pumping of the Pt/YSZ catalyst, using a positive potential, leads to the spillover of oxygen surface species from the YSZ support onto the surface of the Pt electrode. Based on the XP spectra, the spillover species on Pt is identical to oxygen chemisorbed from the gas-phase.

11.
J Am Chem Soc ; 141(16): 6537-6544, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30929429

RESUMO

During the electrochemical reduction of oxygen, platinum catalysts are often (partially) oxidized. While these platinum oxides are thought to play a crucial role in fuel cell degradation, their nature remains unclear. Here, we studied the electrochemical oxidation of Pt nanoparticles using in situ XPS. When the particles were sandwiched between a graphene sheet and a proton exchange membrane that is wetted from the back, a confined electrolyte layer was formed, allowing us to probe the electrocatalyst under wet conditions. We show that the surface oxide formed at the onset of Pt oxidation has a mixed Ptδ+/Pt2+/Pt4+ composition. The formation of this surface oxide is suppressed when a Br-containing membrane is chosen due to adsorption of Br on Pt. Time-resolved measurements show that oxidation is fast for nanoparticles: even bulk PtO2· nH2O growth occurs on the subminute time scale. The fast formation of Pt4+ species in both surface and bulk oxide form suggests that Pt4+-oxides are likely formed (or reduced) even in the transient processes that dominate Pt electrode degradation.

12.
Phys Chem Chem Phys ; 21(7): 3781-3794, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30707216

RESUMO

We study the changes in the crystallographic phases and in the chemical states during the iron exsolution process of lanthanum strontium ferrite (LSF, La0.6Sr0.4FeO3-δ). By using thin films of orthorhombic LSF, grown epitaxially on NaCl(001) and rhombohedral LSF powder, the materials gap is bridged. The orthorhombic material transforms into a fluorite structure after the exsolution has begun, which further hinders this process. For the powder material, by a combination of in situ core level spectroscopy and ex situ neutron diffraction, we could directly highlight differences in the Fe chemical nature between surface and bulk: whereas the bulk contains Fe(iv) in the fully oxidized state, the surface spectra can be described perfectly by the sole presence of Fe(iii). We also present corresponding magnetic and oxygen vacancy concentration data of reduced rhombohedral LSF that did not undergo a phase transformation to the cubic perovskite system based on neutron diffraction data.

13.
Angew Chem Int Ed Engl ; 58(30): 10325-10329, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-30980453

RESUMO

The electronic and structural properties of Au/ZnO under industrial and idealized methanol synthesis conditions have been investigated. This was achieved by kinetic measurements in combination with time-resolved operando infrared (DRIFTS) as well as in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and X-ray absorption near-edge spectroscopy (XANES) measurements at the O K-edge together with high-resolution electron microscopy. The adsorption of CO during the reaction revealed the presence of negatively charged Au nanoparticles/Au sites during the initial phase of the reaction. Near-ambient-pressure XPS and XANES demonstrate the build-up of O vacancies during the reaction, which goes along with a substantial increase in the rate of methanol formation. The results are discussed in comparison with previous findings for Cu/ZnO and Au/ZnO catalysts.

14.
Angew Chem Int Ed Engl ; 58(11): 3426-3432, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30589176

RESUMO

Manganese oxide (MnOx ) electrocatalysts are examined herein by in situ soft X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L-edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn-O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K-edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.

15.
Angew Chem Int Ed Engl ; 57(44): 14613-14618, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30179293

RESUMO

C-saturated Pd0 nanoparticles with an extended phase boundary to ZrO2 evolve from a Pd0 Zr0 precatalyst under CH4 dry reforming conditions. This highly active catalyst state fosters bifunctional action: CO2 is efficiently activated at oxidic phase boundary sites and Pdx C provides fast supply of C-atoms toward the latter.

16.
J Am Chem Soc ; 139(34): 11825-11832, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28753282

RESUMO

Catalytic materials tend to be metastable. When a material becomes metastable close to a thermodynamic phase transition it can exhibit unique catalytic behavior. Using in situ photoemission spectroscopy and online product analysis, we have found that close to the Cu2O-CuO phase transition there is a boost in activity for a kinetically driven reaction, ethylene epoxidation, giving rise to a 20-fold selectivity enhancement relative to the selectivity observed far from the phase transition. By tuning conditions toward low oxygen chemical potential, this metastable state and the resulting enhanced selectivity can be sustained. Using density functional theory, we find that metastable O precursors to the CuO phase can account for the selectivity enhancements near the phase transition.

17.
J Am Chem Soc ; 138(12): 4146-54, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26954458

RESUMO

The interaction of CO, CO2, CO + H2, CO2 + H2, and CO + CO2 + H2 with the nickel (110) single crystal termination has been investigated at 10(-1) mbar in situ as a function of the surface temperature in the 300-525 K range by means of infrared-visible sum frequency generation (IR-vis SFG) vibrational spectroscopy and by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). Several stable surface species have been observed and identified. Besides atomic carbon and precursors for graphenic C phases, five nonequivalent CO species have been distinguished, evidencing the role of coadsorption effects with H and C atoms, of H-induced activation of CO, and of surface reconstruction. At low temperature, carbonate species produced by the interaction of CO2 with atomic oxygen, which stems from the dissociation of CO2 into CO + O, are found on the surface. A metastable activated CO2(-) species is also detected, being at the same time a precursor state toward dissociation into CO and O in the reverse water-gas shift mechanism and a reactive species that undergoes direct conversion in the Sabatier methanation process. Finally, the stability of ethylidyne is deduced on the basis of our spectroscopic observations.

18.
Phys Chem Chem Phys ; 18(46): 31586-31599, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27834976

RESUMO

An inverse Pd-Zr model catalyst was prepared by chemical vapor deposition (CVD) using zirconium-t-butoxide (ZTB) as an organometallic precursor. Pd-Zr interaction was then investigated with focus on the correlation of reforming performance with the oxidation state of Zr. As test reactions, dry reforming of methane (DRM) and methanol steam reforming (MSR) were chosen. Depending on treatments, either ZrOxHy or ZrO2 overlayers or Zr as sub-nanometer clusters could be obtained. Following the adsorption of ZTB on Pd(111), a partially hydroxylated Zr4+-containing layer was formed, which can be reduced to metallic Zr by thermal annealing in ultrahigh vacuum, leading to redox-active Zr0 sub-nanometer clusters. Complementary density functional theoretical (DFT) calculations showed that a single layer of ZrO2 on Pd(111) can be more easily reduced toward the metallic state than a double- and triple layer. Also, the initial and resulting layer compositions greatly depend on gas environment. The lower the water background partial pressure, the faster and more complete the reduction of Zr4+ species to Zr0 on Pd takes place. Under methanol steam reforming conditions, water activation by hydroxylation of Zr occurs. In excess of methanol, strong coking is induced by the Pd/ZrOxHy interface. In contrast, dry reforming of methane is effectively promoted if these initially metallic Zr species are present in the pre-catalyst, leading to a Pd/ZrOxHy phase boundary by oxidative activation under reaction conditions. These reaction-induced active sites for DRM are stable with respect to carbon blocking or coking. In essence, Zr doping of Pd opens specific CO2 activation channels, which are absent on pure metallic Pd.

19.
Angew Chem Int Ed Engl ; 55(12): 4092-6, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26913704

RESUMO

The electronic and structural properties of vanadium-containing phases govern the formation of isolated active sites at the surface of these catalysts for selective alkane oxidation. This concept is not restricted to vanadium oxide. The deliberate use of hydrothermal techniques can turn the typical combustion catalyst manganese oxide into a selective catalyst for oxidative propane dehydrogenation. Nanostructured, crystalline MnWO4 serves as the support that stabilizes a defect-rich MnOx surface phase. Oxygen defects can be reversibly replenished and depleted at the reaction temperature. Terminating MnOx zigzag chains on the (010) crystal planes are suspected to bear structurally site-isolated oxygen defects that account for the unexpectedly good performance of the catalyst in propane activation.

20.
Phys Chem Chem Phys ; 17(14): 9288-312, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25760562

RESUMO

We report on a combined density functional theory and the experimental study of the O1s binding energies and X-ray Absorption Near Edge Structure (XANES) of a variety of oxygen species on Ag(111) and Ag(110) surfaces. Our theoretical spectra agree with our measured results for known structures, including the p(N× 1) reconstruction of the Ag(110) surface and the p(4 × 4) reconstruction of the Ag(111) surface. Combining the O1s binding energy and XANES spectra yields unique spectroscopic fingerprints, allowing us to show that unreconstructed atomic oxygen is likely not present on either surface under equilibrium conditions at oxygen chemical potentials typical for ethylene epoxidation. Furthermore, we find no adsorbed or dissolved atomic species whose calculated spectroscopic features agree with those measured for the oxygen species believed to catalyze the partial oxidation of ethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA